Skip to content

REGR: DataFrame.transpose resulting in not contiguous data on nullable EAs #57474

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.2.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ Fixed regressions
- Fixed regression in :meth:`DataFrame.to_dict` with ``orient='list'`` and datetime or timedelta types returning integers (:issue:`54824`)
- Fixed regression in :meth:`DataFrame.to_json` converting nullable integers to floats (:issue:`57224`)
- Fixed regression in :meth:`DataFrame.to_sql` when ``method="multi"`` is passed and the dialect type is not Oracle (:issue:`57310`)
- Fixed regression in :meth:`DataFrame.transpose` with nullable extension dtypes not having F-contiguous data potentially causing exceptions when used (:issue:`57315`)
- Fixed regression in :meth:`DataFrameGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmin`, :meth:`SeriesGroupBy.idxmax` ignoring the ``skipna`` argument (:issue:`57040`)
- Fixed regression in :meth:`DataFrameGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmin`, :meth:`SeriesGroupBy.idxmax` where values containing the minimum or maximum value for the dtype could produce incorrect results (:issue:`57040`)
- Fixed regression in :meth:`ExtensionArray.to_numpy` raising for non-numeric masked dtypes (:issue:`56991`)
Expand Down
17 changes: 14 additions & 3 deletions pandas/core/arrays/masked.py
Original file line number Diff line number Diff line change
Expand Up @@ -1651,13 +1651,24 @@ def transpose_homogeneous_masked_arrays(
same dtype. The caller is responsible for ensuring validity of input data.
"""
masked_arrays = list(masked_arrays)
dtype = masked_arrays[0].dtype

values = [arr._data.reshape(1, -1) for arr in masked_arrays]
transposed_values = np.concatenate(values, axis=0)
transposed_values = np.concatenate(
values,
axis=0,
out=np.empty(
(len(masked_arrays), len(masked_arrays[0])),
order="F",
dtype=dtype.numpy_dtype,
),
)

masks = [arr._mask.reshape(1, -1) for arr in masked_arrays]
transposed_masks = np.concatenate(masks, axis=0)
transposed_masks = np.concatenate(
masks, axis=0, out=np.empty_like(transposed_values, dtype=bool)
)

dtype = masked_arrays[0].dtype
arr_type = dtype.construct_array_type()
transposed_arrays: list[BaseMaskedArray] = []
for i in range(transposed_values.shape[1]):
Expand Down
17 changes: 17 additions & 0 deletions pandas/tests/frame/methods/test_transpose.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import numpy as np
import pytest

import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Expand Down Expand Up @@ -179,3 +180,19 @@ def test_transpose_not_inferring_dt_mixed_blocks(self):
dtype=object,
)
tm.assert_frame_equal(result, expected)

@pytest.mark.parametrize("dtype1", ["Int64", "Float64"])
@pytest.mark.parametrize("dtype2", ["Int64", "Float64"])
def test_transpose(self, dtype1, dtype2):
# GH#57315 - transpose should have F contiguous blocks
df = DataFrame(
{
"a": pd.array([1, 1, 2], dtype=dtype1),
"b": pd.array([3, 4, 5], dtype=dtype2),
}
)
result = df.T
for blk in result._mgr.blocks:
# When dtypes are unequal, we get NumPy object array
data = blk.values._data if dtype1 == dtype2 else blk.values
assert data.flags["F_CONTIGUOUS"]