Skip to content

REGR: Fix to_numpy conversion for arrow ea with float dtype given #57233

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.2.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ Fixed regressions
- Fixed regression in :meth:`DataFrameGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmin`, :meth:`SeriesGroupBy.idxmax` where values containing the minimum or maximum value for the dtype could produce incorrect results (:issue:`57040`)
- Fixed regression in :meth:`Index.join` raising ``TypeError`` when joining an empty index to a non-empty index containing mixed dtype values (:issue:`57048`)
- Fixed regression in :meth:`Series.pct_change` raising a ``ValueError`` for an empty :class:`Series` (:issue:`57056`)
- Fixed regression in :meth:`Series.to_numpy` when dtype is given as float and the data contains NaNs (:issue:`57121`)

.. ---------------------------------------------------------------------------
.. _whatsnew_221.bug_fixes:
Expand Down
2 changes: 2 additions & 0 deletions pandas/core/arrays/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,8 @@ def to_numpy_dtype_inference(
dtype = arr.dtype.numpy_dtype # type: ignore[union-attr]
elif dtype is not None:
dtype = np.dtype(dtype)
if na_value is lib.no_default and hasna and dtype.kind == "f":
na_value = np.nan
dtype_given = True
else:
dtype_given = True
Comment on lines 40 to 46
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do you think it is better if we write from two blocks to single block ?

else: 
  if dtype is not None:
      dtype = np.dtype(dtype)
      if na_value is lib.no_default and hasna and dtype.kind == "f":
          na_value = np.nan
  
  dtype_given = True

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

no I prefer this

Expand Down
2 changes: 0 additions & 2 deletions pandas/tests/arrays/boolean/test_construction.py
Original file line number Diff line number Diff line change
Expand Up @@ -308,8 +308,6 @@ def test_to_numpy(box):
# converting to int or float without specifying na_value raises
with pytest.raises(ValueError, match="cannot convert to 'int64'-dtype"):
arr.to_numpy(dtype="int64")
with pytest.raises(ValueError, match="cannot convert to 'float64'-dtype"):
arr.to_numpy(dtype="float64")


def test_to_numpy_copy():
Expand Down
8 changes: 4 additions & 4 deletions pandas/tests/arrays/floating/test_to_numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,10 +33,10 @@ def test_to_numpy_float(box):
tm.assert_numpy_array_equal(result, expected)

arr = con([0.1, 0.2, None], dtype="Float64")
with pytest.raises(ValueError, match="cannot convert to 'float64'-dtype"):
result = arr.to_numpy(dtype="float64")
result = arr.to_numpy(dtype="float64")
expected = np.array([0.1, 0.2, np.nan], dtype="float64")
tm.assert_numpy_array_equal(result, expected)

# need to explicitly specify na_value
result = arr.to_numpy(dtype="float64", na_value=np.nan)
expected = np.array([0.1, 0.2, np.nan], dtype="float64")
tm.assert_numpy_array_equal(result, expected)
Expand Down Expand Up @@ -100,7 +100,7 @@ def test_to_numpy_dtype(box, dtype):
tm.assert_numpy_array_equal(result, expected)


@pytest.mark.parametrize("dtype", ["float64", "float32", "int32", "int64", "bool"])
@pytest.mark.parametrize("dtype", ["int32", "int64", "bool"])
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
def test_to_numpy_na_raises(box, dtype):
con = pd.Series if box else pd.array
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/arrays/integer/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -269,7 +269,7 @@ def test_to_numpy_dtype(dtype, in_series):
tm.assert_numpy_array_equal(result, expected)


@pytest.mark.parametrize("dtype", ["float64", "int64", "bool"])
@pytest.mark.parametrize("dtype", ["int64", "bool"])
def test_to_numpy_na_raises(dtype):
a = pd.array([0, 1, None], dtype="Int64")
with pytest.raises(ValueError, match=dtype):
Expand Down
11 changes: 11 additions & 0 deletions pandas/tests/series/methods/test_to_numpy.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
import numpy as np
import pytest

import pandas.util._test_decorators as td

from pandas import (
NA,
Series,
Expand All @@ -23,3 +25,12 @@ def test_to_numpy_cast_before_setting_na():
result = ser.to_numpy(dtype=np.float64, na_value=np.nan)
expected = np.array([1.0])
tm.assert_numpy_array_equal(result, expected)


@td.skip_if_no("pyarrow")
def test_to_numpy_arrow_dtype_given():
# GH#57121
ser = Series([1, NA], dtype="int64[pyarrow]")
result = ser.to_numpy(dtype="float64")
expected = np.array([1.0, np.nan])
tm.assert_numpy_array_equal(result, expected)