Skip to content

TST: parametrize over dt64 unit #56165

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions pandas/tests/arithmetic/test_datetime64.py
Original file line number Diff line number Diff line change
Expand Up @@ -905,7 +905,7 @@ def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture):

dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS")
other = np.timedelta64("NaT")
expected = DatetimeIndex(["NaT"] * 9, tz=tz)
expected = DatetimeIndex(["NaT"] * 9, tz=tz).as_unit("ns")

obj = tm.box_expected(dti, box_with_array)
expected = tm.box_expected(expected, box_with_array)
Expand Down Expand Up @@ -1590,13 +1590,13 @@ class TestDatetime64OverflowHandling:

def test_dt64_overflow_masking(self, box_with_array):
# GH#25317
left = Series([Timestamp("1969-12-31")])
left = Series([Timestamp("1969-12-31")], dtype="M8[ns]")
right = Series([NaT])

left = tm.box_expected(left, box_with_array)
right = tm.box_expected(right, box_with_array)

expected = TimedeltaIndex([NaT])
expected = TimedeltaIndex([NaT], dtype="m8[ns]")
expected = tm.box_expected(expected, box_with_array)

result = left - right
Expand Down
5 changes: 3 additions & 2 deletions pandas/tests/frame/indexing/test_setitem.py
Original file line number Diff line number Diff line change
Expand Up @@ -1354,7 +1354,8 @@ def test_setitem_frame_dup_cols_dtype(self):

def test_frame_setitem_empty_dataframe(self):
# GH#28871
df = DataFrame({"date": [datetime(2000, 1, 1)]}).set_index("date")
dti = DatetimeIndex(["2000-01-01"], dtype="M8[ns]", name="date")
df = DataFrame({"date": dti}).set_index("date")
df = df[0:0].copy()

df["3010"] = None
Expand All @@ -1363,6 +1364,6 @@ def test_frame_setitem_empty_dataframe(self):
expected = DataFrame(
[],
columns=["3010", "2010"],
index=Index([], dtype="datetime64[ns]", name="date"),
index=dti[:0],
)
tm.assert_frame_equal(df, expected)
23 changes: 16 additions & 7 deletions pandas/tests/frame/methods/test_quantile.py
Original file line number Diff line number Diff line change
Expand Up @@ -623,23 +623,23 @@ def test_quantile_nan(self, interp_method, request, using_array_manager):
exp = DataFrame({"a": [3.0, 4.0], "b": [np.nan, np.nan]}, index=[0.5, 0.75])
tm.assert_frame_equal(res, exp)

def test_quantile_nat(self, interp_method, request, using_array_manager):
def test_quantile_nat(self, interp_method, request, using_array_manager, unit):
interpolation, method = interp_method
if method == "table" and using_array_manager:
request.applymarker(pytest.mark.xfail(reason="Axis name incorrectly set."))
# full NaT column
df = DataFrame({"a": [pd.NaT, pd.NaT, pd.NaT]})
df = DataFrame({"a": [pd.NaT, pd.NaT, pd.NaT]}, dtype=f"M8[{unit}]")

res = df.quantile(
0.5, numeric_only=False, interpolation=interpolation, method=method
)
exp = Series([pd.NaT], index=["a"], name=0.5)
exp = Series([pd.NaT], index=["a"], name=0.5, dtype=f"M8[{unit}]")
tm.assert_series_equal(res, exp)

res = df.quantile(
[0.5], numeric_only=False, interpolation=interpolation, method=method
)
exp = DataFrame({"a": [pd.NaT]}, index=[0.5])
exp = DataFrame({"a": [pd.NaT]}, index=[0.5], dtype=f"M8[{unit}]")
tm.assert_frame_equal(res, exp)

# mixed non-null / full null column
Expand All @@ -651,20 +651,29 @@ def test_quantile_nat(self, interp_method, request, using_array_manager):
Timestamp("2012-01-03"),
],
"b": [pd.NaT, pd.NaT, pd.NaT],
}
},
dtype=f"M8[{unit}]",
)

res = df.quantile(
0.5, numeric_only=False, interpolation=interpolation, method=method
)
exp = Series([Timestamp("2012-01-02"), pd.NaT], index=["a", "b"], name=0.5)
exp = Series(
[Timestamp("2012-01-02"), pd.NaT],
index=["a", "b"],
name=0.5,
dtype=f"M8[{unit}]",
)
tm.assert_series_equal(res, exp)

res = df.quantile(
[0.5], numeric_only=False, interpolation=interpolation, method=method
)
exp = DataFrame(
[[Timestamp("2012-01-02"), pd.NaT]], index=[0.5], columns=["a", "b"]
[[Timestamp("2012-01-02"), pd.NaT]],
index=[0.5],
columns=["a", "b"],
dtype=f"M8[{unit}]",
)
tm.assert_frame_equal(res, exp)

Expand Down
20 changes: 14 additions & 6 deletions pandas/tests/frame/test_reductions.py
Original file line number Diff line number Diff line change
Expand Up @@ -598,7 +598,7 @@ def test_sem(self, datetime_frame):
"C": [1.0],
"D": ["a"],
"E": Categorical(["a"], categories=["a"]),
"F": to_datetime(["2000-1-2"]),
"F": pd.DatetimeIndex(["2000-01-02"], dtype="M8[ns]"),
"G": to_timedelta(["1 days"]),
},
),
Expand All @@ -610,7 +610,7 @@ def test_sem(self, datetime_frame):
"C": [np.nan],
"D": np.array([np.nan], dtype=object),
"E": Categorical([np.nan], categories=["a"]),
"F": [pd.NaT],
"F": pd.DatetimeIndex([pd.NaT], dtype="M8[ns]"),
"G": to_timedelta([pd.NaT]),
},
),
Expand All @@ -621,7 +621,9 @@ def test_sem(self, datetime_frame):
"I": [8, 9, np.nan, np.nan],
"J": [1, np.nan, np.nan, np.nan],
"K": Categorical(["a", np.nan, np.nan, np.nan], categories=["a"]),
"L": to_datetime(["2000-1-2", "NaT", "NaT", "NaT"]),
"L": pd.DatetimeIndex(
["2000-01-02", "NaT", "NaT", "NaT"], dtype="M8[ns]"
),
"M": to_timedelta(["1 days", "nan", "nan", "nan"]),
"N": [0, 1, 2, 3],
},
Expand All @@ -633,7 +635,9 @@ def test_sem(self, datetime_frame):
"I": [8, 9, np.nan, np.nan],
"J": [1, np.nan, np.nan, np.nan],
"K": Categorical([np.nan, "a", np.nan, np.nan], categories=["a"]),
"L": to_datetime(["NaT", "2000-1-2", "NaT", "NaT"]),
"L": pd.DatetimeIndex(
["NaT", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]"
),
"M": to_timedelta(["nan", "1 days", "nan", "nan"]),
"N": [0, 1, 2, 3],
},
Expand All @@ -648,13 +652,17 @@ def test_mode_dropna(self, dropna, expected):
"C": [1, np.nan, np.nan, np.nan],
"D": [np.nan, np.nan, "a", np.nan],
"E": Categorical([np.nan, np.nan, "a", np.nan]),
"F": to_datetime(["NaT", "2000-1-2", "NaT", "NaT"]),
"F": pd.DatetimeIndex(
["NaT", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]"
),
"G": to_timedelta(["1 days", "nan", "nan", "nan"]),
"H": [8, 8, 9, 9],
"I": [9, 9, 8, 8],
"J": [1, 1, np.nan, np.nan],
"K": Categorical(["a", np.nan, "a", np.nan]),
"L": to_datetime(["2000-1-2", "2000-1-2", "NaT", "NaT"]),
"L": pd.DatetimeIndex(
["2000-01-02", "2000-01-02", "NaT", "NaT"], dtype="M8[ns]"
),
"M": to_timedelta(["1 days", "nan", "1 days", "nan"]),
"N": np.arange(4, dtype="int64"),
}
Expand Down
5 changes: 3 additions & 2 deletions pandas/tests/groupby/methods/test_groupby_shift_diff.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,10 +117,11 @@ def test_group_diff_real_frame(any_real_numpy_dtype):
[Timedelta("5 days"), Timedelta("6 days"), Timedelta("7 days")],
],
)
def test_group_diff_datetimelike(data):
def test_group_diff_datetimelike(data, unit):
df = DataFrame({"a": [1, 2, 2], "b": data})
df["b"] = df["b"].dt.as_unit(unit)
result = df.groupby("a")["b"].diff()
expected = Series([NaT, NaT, Timedelta("1 days")], name="b")
expected = Series([NaT, NaT, Timedelta("1 days")], name="b").dt.as_unit(unit)
tm.assert_series_equal(result, expected)


Expand Down
24 changes: 18 additions & 6 deletions pandas/tests/groupby/test_timegrouper.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,11 +98,17 @@ def test_groupby_with_timegrouper(self):
for df in [df_original, df_reordered]:
df = df.set_index(["Date"])

exp_dti = date_range(
"20130901",
"20131205",
freq="5D",
name="Date",
inclusive="left",
unit=df.index.unit,
)
expected = DataFrame(
{"Buyer": 0, "Quantity": 0},
index=date_range(
"20130901", "20131205", freq="5D", name="Date", inclusive="left"
),
index=exp_dti,
)
# Cast to object to avoid implicit cast when setting entry to "CarlCarlCarl"
expected = expected.astype({"Buyer": object})
Expand Down Expand Up @@ -514,6 +520,7 @@ def test_groupby_groups_datetimeindex(self):
groups = grouped.groups
assert isinstance(next(iter(groups.keys())), datetime)

def test_groupby_groups_datetimeindex2(self):
# GH#11442
index = date_range("2015/01/01", periods=5, name="date")
df = DataFrame({"A": [5, 6, 7, 8, 9], "B": [1, 2, 3, 4, 5]}, index=index)
Expand Down Expand Up @@ -876,7 +883,9 @@ def test_groupby_apply_timegrouper_with_nat_dict_returns(

res = gb["Quantity"].apply(lambda x: {"foo": len(x)})

dti = date_range("2013-09-01", "2013-10-01", freq="5D", name="Date")
df = gb.obj
unit = df["Date"]._values.unit
dti = date_range("2013-09-01", "2013-10-01", freq="5D", name="Date", unit=unit)
mi = MultiIndex.from_arrays([dti, ["foo"] * len(dti)])
expected = Series([3, 0, 0, 0, 0, 0, 2], index=mi, name="Quantity")
tm.assert_series_equal(res, expected)
Expand All @@ -890,7 +899,9 @@ def test_groupby_apply_timegrouper_with_nat_scalar_returns(

res = gb["Quantity"].apply(lambda x: x.iloc[0] if len(x) else np.nan)

dti = date_range("2013-09-01", "2013-10-01", freq="5D", name="Date")
df = gb.obj
unit = df["Date"]._values.unit
dti = date_range("2013-09-01", "2013-10-01", freq="5D", name="Date", unit=unit)
expected = Series(
[18, np.nan, np.nan, np.nan, np.nan, np.nan, 5],
index=dti._with_freq(None),
Expand Down Expand Up @@ -919,9 +930,10 @@ def test_groupby_apply_timegrouper_with_nat_apply_squeeze(
with tm.assert_produces_warning(FutureWarning, match=msg):
res = gb.apply(lambda x: x["Quantity"] * 2)

dti = Index([Timestamp("2013-12-31")], dtype=df["Date"].dtype, name="Date")
expected = DataFrame(
[[36, 6, 6, 10, 2]],
index=Index([Timestamp("2013-12-31")], name="Date"),
index=dti,
columns=Index([0, 1, 5, 2, 3], name="Quantity"),
)
tm.assert_frame_equal(res, expected)
Expand Down
21 changes: 13 additions & 8 deletions pandas/tests/groupby/transform/test_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,12 +115,15 @@ def test_transform_fast2():
)
result = df.groupby("grouping").transform("first")

dates = [
Timestamp("2014-1-1"),
Timestamp("2014-1-2"),
Timestamp("2014-1-2"),
Timestamp("2014-1-4"),
]
dates = pd.Index(
[
Timestamp("2014-1-1"),
Timestamp("2014-1-2"),
Timestamp("2014-1-2"),
Timestamp("2014-1-4"),
],
dtype="M8[ns]",
)
expected = DataFrame(
{"f": [1.1, 2.1, 2.1, 4.5], "d": dates, "i": [1, 2, 2, 4]},
columns=["f", "i", "d"],
Expand Down Expand Up @@ -532,7 +535,7 @@ def test_series_fast_transform_date():
Timestamp("2014-1-2"),
Timestamp("2014-1-4"),
]
expected = Series(dates, name="d")
expected = Series(dates, name="d", dtype="M8[ns]")
tm.assert_series_equal(result, expected)


Expand Down Expand Up @@ -1204,7 +1207,9 @@ def test_groupby_transform_with_datetimes(func, values):

result = stocks.groupby(stocks["week_id"])["price"].transform(func)

expected = Series(data=pd.to_datetime(values), index=dates, name="price")
expected = Series(
data=pd.to_datetime(values).as_unit("ns"), index=dates, name="price"
)

tm.assert_series_equal(result, expected)

Expand Down
5 changes: 3 additions & 2 deletions pandas/tests/indexes/datetimes/methods/test_astype.py
Original file line number Diff line number Diff line change
Expand Up @@ -292,7 +292,7 @@ def test_integer_index_astype_datetime(self, tz, dtype):
# GH 20997, 20964, 24559
val = [Timestamp("2018-01-01", tz=tz).as_unit("ns")._value]
result = Index(val, name="idx").astype(dtype)
expected = DatetimeIndex(["2018-01-01"], tz=tz, name="idx")
expected = DatetimeIndex(["2018-01-01"], tz=tz, name="idx").as_unit("ns")
tm.assert_index_equal(result, expected)

def test_dti_astype_period(self):
Expand All @@ -312,8 +312,9 @@ class TestAstype:
def test_astype_category(self, tz):
obj = date_range("2000", periods=2, tz=tz, name="idx")
result = obj.astype("category")
dti = DatetimeIndex(["2000-01-01", "2000-01-02"], tz=tz).as_unit("ns")
expected = pd.CategoricalIndex(
[Timestamp("2000-01-01", tz=tz), Timestamp("2000-01-02", tz=tz)],
dti,
name="idx",
)
tm.assert_index_equal(result, expected)
Expand Down
Loading