Skip to content

ASV: avoid "H" and "S" freq deprecations #55921

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions asv_bench/benchmarks/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,9 +50,9 @@ def setup(self, unique, sort, dtype):
"float": pd.Index(np.random.randn(N), dtype="float64"),
"object_str": string_index,
"object": pd.Index(np.arange(N), dtype="object"),
"datetime64[ns]": pd.date_range("2011-01-01", freq="H", periods=N),
"datetime64[ns]": pd.date_range("2011-01-01", freq="h", periods=N),
"datetime64[ns, tz]": pd.date_range(
"2011-01-01", freq="H", periods=N, tz="Asia/Tokyo"
"2011-01-01", freq="h", periods=N, tz="Asia/Tokyo"
),
"Int64": pd.array(np.arange(N), dtype="Int64"),
"boolean": pd.array(np.random.randint(0, 2, N), dtype="boolean"),
Expand Down Expand Up @@ -93,9 +93,9 @@ def setup(self, unique, keep, dtype):
"uint": pd.Index(np.arange(N), dtype="uint64"),
"float": pd.Index(np.random.randn(N), dtype="float64"),
"string": tm.makeStringIndex(N),
"datetime64[ns]": pd.date_range("2011-01-01", freq="H", periods=N),
"datetime64[ns]": pd.date_range("2011-01-01", freq="h", periods=N),
"datetime64[ns, tz]": pd.date_range(
"2011-01-01", freq="H", periods=N, tz="Asia/Tokyo"
"2011-01-01", freq="h", periods=N, tz="Asia/Tokyo"
),
"timestamp[ms][pyarrow]": pd.Index(
np.arange(N), dtype=pd.ArrowDtype(pa.timestamp("ms"))
Expand Down
2 changes: 1 addition & 1 deletion asv_bench/benchmarks/arithmetic.py
Original file line number Diff line number Diff line change
Expand Up @@ -491,7 +491,7 @@ class BinaryOpsMultiIndex:
param_names = ["func"]

def setup(self, func):
array = date_range("20200101 00:00", "20200102 0:00", freq="S")
array = date_range("20200101 00:00", "20200102 0:00", freq="s")
level_0_names = [str(i) for i in range(30)]

index = pd.MultiIndex.from_product([level_0_names, array])
Expand Down
6 changes: 3 additions & 3 deletions asv_bench/benchmarks/frame_methods.py
Original file line number Diff line number Diff line change
Expand Up @@ -439,9 +439,9 @@ def setup(self, inplace, dtype):
N, M = 10000, 100
if dtype in ("datetime64[ns]", "datetime64[ns, tz]", "timedelta64[ns]"):
data = {
"datetime64[ns]": date_range("2011-01-01", freq="H", periods=N),
"datetime64[ns]": date_range("2011-01-01", freq="h", periods=N),
"datetime64[ns, tz]": date_range(
"2011-01-01", freq="H", periods=N, tz="Asia/Tokyo"
"2011-01-01", freq="h", periods=N, tz="Asia/Tokyo"
),
"timedelta64[ns]": timedelta_range(start="1 day", periods=N, freq="1D"),
}
Expand Down Expand Up @@ -649,7 +649,7 @@ def time_series_nunique_nan(self):
class Duplicated:
def setup(self):
n = 1 << 20
t = date_range("2015-01-01", freq="S", periods=(n // 64))
t = date_range("2015-01-01", freq="s", periods=(n // 64))
xs = np.random.randn(n // 64).round(2)
self.df = DataFrame(
{
Expand Down
2 changes: 1 addition & 1 deletion asv_bench/benchmarks/gil.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,7 @@ def run(dti):
def time_datetime_to_period(self):
@test_parallel(num_threads=2)
def run(dti):
dti.to_period("S")
dti.to_period("s")

run(self.dti)

Expand Down
2 changes: 1 addition & 1 deletion asv_bench/benchmarks/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -238,7 +238,7 @@ def time_series_nth(self, dtype):

class DateAttributes:
def setup(self):
rng = date_range("1/1/2000", "12/31/2005", freq="H")
rng = date_range("1/1/2000", "12/31/2005", freq="h")
self.year, self.month, self.day = rng.year, rng.month, rng.day
self.ts = Series(np.random.randn(len(rng)), index=rng)

Expand Down
4 changes: 2 additions & 2 deletions asv_bench/benchmarks/indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,7 +232,7 @@ def setup(self, index):
N = 100000
indexes = {
"int": Index(np.arange(N), dtype=np.int64),
"datetime": date_range("2011-01-01", freq="S", periods=N),
"datetime": date_range("2011-01-01", freq="s", periods=N),
}
index = indexes[index]
self.s = Series(np.random.rand(N), index=index)
Expand Down Expand Up @@ -465,7 +465,7 @@ def time_loc_row(self, unique_cols):
class AssignTimeseriesIndex:
def setup(self):
N = 100000
idx = date_range("1/1/2000", periods=N, freq="H")
idx = date_range("1/1/2000", periods=N, freq="h")
self.df = DataFrame(np.random.randn(N, 1), columns=["A"], index=idx)

def time_frame_assign_timeseries_index(self):
Expand Down
4 changes: 2 additions & 2 deletions asv_bench/benchmarks/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ def time_unique_date_strings(self, cache, count):

class ToDatetimeISO8601:
def setup(self):
rng = date_range(start="1/1/2000", periods=20000, freq="H")
rng = date_range(start="1/1/2000", periods=20000, freq="h")
self.strings = rng.strftime("%Y-%m-%d %H:%M:%S").tolist()
self.strings_nosep = rng.strftime("%Y%m%d %H:%M:%S").tolist()
self.strings_tz_space = [
Expand Down Expand Up @@ -276,7 +276,7 @@ def time_dup_string_tzoffset_dates(self, cache):
# GH 43901
class ToDatetimeInferDatetimeFormat:
def setup(self):
rng = date_range(start="1/1/2000", periods=100000, freq="H")
rng = date_range(start="1/1/2000", periods=100000, freq="h")
self.strings = rng.strftime("%Y-%m-%d %H:%M:%S").tolist()

def time_infer_datetime_format(self):
Expand Down
12 changes: 6 additions & 6 deletions asv_bench/benchmarks/io/csv.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ class ToCSVDatetimeIndex(BaseIO):
fname = "__test__.csv"

def setup(self):
rng = date_range("2000", periods=100_000, freq="S")
rng = date_range("2000", periods=100_000, freq="s")
self.data = DataFrame({"a": 1}, index=rng)

def time_frame_date_formatting_index(self):
Expand All @@ -102,15 +102,15 @@ def time_frame_date_no_format_index(self):
class ToCSVPeriod(BaseIO):
fname = "__test__.csv"

params = ([1000, 10000], ["D", "H"])
params = ([1000, 10000], ["D", "h"])
param_names = ["nobs", "freq"]

def setup(self, nobs, freq):
rng = period_range(start="2000-01-01", periods=nobs, freq=freq)
self.data = DataFrame(rng)
if freq == "D":
self.default_fmt = "%Y-%m-%d"
elif freq == "H":
elif freq == "h":
self.default_fmt = "%Y-%m-%d %H:00"

def time_frame_period_formatting_default(self, nobs, freq):
Expand All @@ -130,15 +130,15 @@ def time_frame_period_formatting(self, nobs, freq):
class ToCSVPeriodIndex(BaseIO):
fname = "__test__.csv"

params = ([1000, 10000], ["D", "H"])
params = ([1000, 10000], ["D", "h"])
param_names = ["nobs", "freq"]

def setup(self, nobs, freq):
rng = period_range(start="2000-01-01", periods=nobs, freq=freq)
self.data = DataFrame({"a": 1}, index=rng)
if freq == "D":
self.default_fmt = "%Y-%m-%d"
elif freq == "H":
elif freq == "h":
self.default_fmt = "%Y-%m-%d %H:00"

def time_frame_period_formatting_index(self, nobs, freq):
Expand Down Expand Up @@ -253,7 +253,7 @@ class ReadCSVConcatDatetime(StringIORewind):
iso8601 = "%Y-%m-%d %H:%M:%S"

def setup(self):
rng = date_range("1/1/2000", periods=50000, freq="S")
rng = date_range("1/1/2000", periods=50000, freq="s")
self.StringIO_input = StringIO("\n".join(rng.strftime(self.iso8601).tolist()))

def time_read_csv(self):
Expand Down
2 changes: 1 addition & 1 deletion asv_bench/benchmarks/io/excel.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ def _generate_dataframe():
df = DataFrame(
np.random.randn(N, C),
columns=[f"float{i}" for i in range(C)],
index=date_range("20000101", periods=N, freq="H"),
index=date_range("20000101", periods=N, freq="h"),
)
df["object"] = tm.makeStringIndex(N)
return df
Expand Down
2 changes: 1 addition & 1 deletion asv_bench/benchmarks/io/hdf.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ def setup(self, format):
self.df = DataFrame(
np.random.randn(N, C),
columns=[f"float{i}" for i in range(C)],
index=date_range("20000101", periods=N, freq="H"),
index=date_range("20000101", periods=N, freq="h"),
)
self.df["object"] = tm.makeStringIndex(N)
self.df.to_hdf(self.fname, "df", format=format)
Expand Down
10 changes: 5 additions & 5 deletions asv_bench/benchmarks/io/json.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ def setup(self, orient, index):
N = 100000
indexes = {
"int": np.arange(N),
"datetime": date_range("20000101", periods=N, freq="H"),
"datetime": date_range("20000101", periods=N, freq="h"),
}
df = DataFrame(
np.random.randn(N, 5),
Expand All @@ -48,7 +48,7 @@ def setup(self, index):
N = 100000
indexes = {
"int": np.arange(N),
"datetime": date_range("20000101", periods=N, freq="H"),
"datetime": date_range("20000101", periods=N, freq="h"),
}
df = DataFrame(
np.random.randn(N, 5),
Expand Down Expand Up @@ -108,7 +108,7 @@ class ToJSON(BaseIO):
def setup(self, orient, frame):
N = 10**5
ncols = 5
index = date_range("20000101", periods=N, freq="H")
index = date_range("20000101", periods=N, freq="h")
timedeltas = timedelta_range(start=1, periods=N, freq="s")
datetimes = date_range(start=1, periods=N, freq="s")
ints = np.random.randint(100000000, size=N)
Expand Down Expand Up @@ -191,7 +191,7 @@ class ToJSONISO(BaseIO):

def setup(self, orient):
N = 10**5
index = date_range("20000101", periods=N, freq="H")
index = date_range("20000101", periods=N, freq="h")
timedeltas = timedelta_range(start=1, periods=N, freq="s")
datetimes = date_range(start=1, periods=N, freq="s")
self.df = DataFrame(
Expand All @@ -214,7 +214,7 @@ class ToJSONLines(BaseIO):
def setup(self):
N = 10**5
ncols = 5
index = date_range("20000101", periods=N, freq="H")
index = date_range("20000101", periods=N, freq="h")
timedeltas = timedelta_range(start=1, periods=N, freq="s")
datetimes = date_range(start=1, periods=N, freq="s")
ints = np.random.randint(100000000, size=N)
Expand Down
2 changes: 1 addition & 1 deletion asv_bench/benchmarks/io/pickle.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ def setup(self):
self.df = DataFrame(
np.random.randn(N, C),
columns=[f"float{i}" for i in range(C)],
index=date_range("20000101", periods=N, freq="H"),
index=date_range("20000101", periods=N, freq="h"),
)
self.df["object"] = tm.makeStringIndex(N)
self.df.to_pickle(self.fname)
Expand Down
2 changes: 1 addition & 1 deletion asv_bench/benchmarks/io/stata.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ def setup(self, convert_dates):
self.df = DataFrame(
np.random.randn(N, C),
columns=[f"float{i}" for i in range(C)],
index=date_range("20000101", periods=N, freq="H"),
index=date_range("20000101", periods=N, freq="h"),
)
self.df["object"] = tm.makeStringIndex(self.N)
self.df["int8_"] = np.random.randint(
Expand Down
2 changes: 1 addition & 1 deletion asv_bench/benchmarks/join_merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,7 +213,7 @@ class JoinNonUnique:
# GH 6329
def setup(self):
date_index = date_range("01-Jan-2013", "23-Jan-2013", freq="min")
daily_dates = date_index.to_period("D").to_timestamp("S", "S")
daily_dates = date_index.to_period("D").to_timestamp("s", "s")
self.fracofday = date_index.values - daily_dates.values
self.fracofday = self.fracofday.astype("timedelta64[ns]")
self.fracofday = self.fracofday.astype(np.float64) / 86_400_000_000_000
Expand Down
2 changes: 1 addition & 1 deletion asv_bench/benchmarks/period.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ def time_from_ints_daily(self, freq, is_offset):

class DataFramePeriodColumn:
def setup(self):
self.rng = period_range(start="1/1/1990", freq="S", periods=20000)
self.rng = period_range(start="1/1/1990", freq="s", periods=20000)
self.df = DataFrame(index=range(len(self.rng)))

def time_setitem_period_column(self):
Expand Down
4 changes: 2 additions & 2 deletions asv_bench/benchmarks/series_methods.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ def setup(self, dtype):
N = 10**6
data = {
"int": np.random.randint(1, 10, N),
"datetime": date_range("2000-01-01", freq="S", periods=N),
"datetime": date_range("2000-01-01", freq="s", periods=N),
}
self.s = Series(data[dtype])
if dtype == "datetime":
Expand Down Expand Up @@ -92,7 +92,7 @@ class Fillna:
def setup(self, dtype):
N = 10**6
if dtype == "datetime64[ns]":
data = date_range("2000-01-01", freq="S", periods=N)
data = date_range("2000-01-01", freq="s", periods=N)
na_value = NaT
elif dtype in ("float64", "Float64"):
data = np.random.randn(N)
Expand Down
4 changes: 2 additions & 2 deletions asv_bench/benchmarks/strftime.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def time_frame_datetime_formatting_custom(self, nobs):

class PeriodStrftime:
timeout = 1500
params = ([1000, 10000], ["D", "H"])
params = ([1000, 10000], ["D", "h"])
param_names = ["nobs", "freq"]

def setup(self, nobs, freq):
Expand All @@ -67,7 +67,7 @@ def setup(self, nobs, freq):
self.data.set_index("i", inplace=True)
if freq == "D":
self.default_fmt = "%Y-%m-%d"
elif freq == "H":
elif freq == "h":
self.default_fmt = "%Y-%m-%d %H:00"

def time_frame_period_to_str(self, nobs, freq):
Expand Down
12 changes: 6 additions & 6 deletions asv_bench/benchmarks/timeseries.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ def setup(self, index_type):
N = 100000
dtidxes = {
"dst": date_range(
start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="S"
start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="s"
),
"repeated": date_range(start="2000", periods=N / 10, freq="s").repeat(10),
"tz_aware": date_range(start="2000", periods=N, freq="s", tz="US/Eastern"),
Expand Down Expand Up @@ -72,13 +72,13 @@ class TzLocalize:

def setup(self, tz):
dst_rng = date_range(
start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="S"
start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="s"
)
self.index = date_range(start="10/29/2000", end="10/29/2000 00:59:59", freq="S")
self.index = date_range(start="10/29/2000", end="10/29/2000 00:59:59", freq="s")
self.index = self.index.append(dst_rng)
self.index = self.index.append(dst_rng)
self.index = self.index.append(
date_range(start="10/29/2000 2:00:00", end="10/29/2000 3:00:00", freq="S")
date_range(start="10/29/2000 2:00:00", end="10/29/2000 3:00:00", freq="s")
)

def time_infer_dst(self, tz):
Expand All @@ -90,7 +90,7 @@ class ResetIndex:
param_names = "tz"

def setup(self, tz):
idx = date_range(start="1/1/2000", periods=1000, freq="H", tz=tz)
idx = date_range(start="1/1/2000", periods=1000, freq="h", tz=tz)
self.df = DataFrame(np.random.randn(1000, 2), index=idx)

def time_reset_datetimeindex(self, tz):
Expand Down Expand Up @@ -255,7 +255,7 @@ def time_get_slice(self, monotonic):
class Lookup:
def setup(self):
N = 1500000
rng = date_range(start="1/1/2000", periods=N, freq="S")
rng = date_range(start="1/1/2000", periods=N, freq="s")
self.ts = Series(1, index=rng)
self.lookup_val = rng[N // 2]

Expand Down