Skip to content

BUG: Index.view with non-nano #55710

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Oct 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.2.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -321,6 +321,7 @@ Datetimelike
^^^^^^^^^^^^
- Bug in :func:`concat` raising ``AttributeError`` when concatenating all-NA DataFrame with :class:`DatetimeTZDtype` dtype DataFrame. (:issue:`52093`)
- Bug in :meth:`DatetimeIndex.union` returning object dtype for tz-aware indexes with the same timezone but different units (:issue:`55238`)
- Bug in :meth:`Index.view` to a datetime64 dtype with non-supported resolution incorrectly raising (:issue:`55710`)
- Bug in :meth:`Tick.delta` with very large ticks raising ``OverflowError`` instead of ``OutOfBoundsTimedelta`` (:issue:`55503`)
- Bug in adding or subtracting a :class:`Week` offset to a ``datetime64`` :class:`Series`, :class:`Index`, or :class:`DataFrame` column with non-nanosecond resolution returning incorrect results (:issue:`55583`)
- Bug in addition or subtraction of :class:`BusinessDay` offset with ``offset`` attribute to non-nanosecond :class:`Index`, :class:`Series`, or :class:`DataFrame` column giving incorrect results (:issue:`55608`)
Expand Down
22 changes: 12 additions & 10 deletions pandas/core/arrays/_mixins.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,10 @@

from pandas._libs import lib
from pandas._libs.arrays import NDArrayBacked
from pandas._libs.tslibs import (
get_unit_from_dtype,
is_supported_unit,
)
from pandas._typing import (
ArrayLike,
AxisInt,
Expand Down Expand Up @@ -137,21 +141,19 @@ def view(self, dtype: Dtype | None = None) -> ArrayLike:
cls = dtype.construct_array_type() # type: ignore[assignment]
dt64_values = arr.view(f"M8[{dtype.unit}]")
return cls(dt64_values, dtype=dtype)
elif dtype == "M8[ns]":
elif lib.is_np_dtype(dtype, "M") and is_supported_unit(
get_unit_from_dtype(dtype)
):
from pandas.core.arrays import DatetimeArray

# error: Argument 1 to "view" of "ndarray" has incompatible type
# "ExtensionDtype | dtype[Any]"; expected "dtype[Any] | type[Any]
# | _SupportsDType[dtype[Any]]"
dt64_values = arr.view(dtype) # type: ignore[arg-type]
dt64_values = arr.view(dtype)
return DatetimeArray(dt64_values, dtype=dtype)
elif dtype == "m8[ns]":
elif lib.is_np_dtype(dtype, "m") and is_supported_unit(
get_unit_from_dtype(dtype)
):
from pandas.core.arrays import TimedeltaArray

# error: Argument 1 to "view" of "ndarray" has incompatible type
# "ExtensionDtype | dtype[Any]"; expected "dtype[Any] | type[Any]
# | _SupportsDType[dtype[Any]]"
td64_values = arr.view(dtype) # type: ignore[arg-type]
td64_values = arr.view(dtype)
return TimedeltaArray(td64_values, dtype=dtype)

# error: Argument "dtype" to "view" of "_ArrayOrScalarCommon" has incompatible
Expand Down
17 changes: 7 additions & 10 deletions pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -999,17 +999,14 @@ def view(self, cls=None):
dtype = pandas_dtype(cls)

if needs_i8_conversion(dtype):
if dtype.kind == "m" and dtype != "m8[ns]":
# e.g. m8[s]
return self._data.view(cls)

idx_cls = self._dtype_to_subclass(dtype)
# NB: we only get here for subclasses that override
# _data_cls such that it is a type and not a tuple
# of types.
arr_cls = idx_cls._data_cls
arr = arr_cls(self._data.view("i8"), dtype=dtype)
return idx_cls._simple_new(arr, name=self.name, refs=self._references)
arr = self.array.view(dtype)
if isinstance(arr, ExtensionArray):
# here we exclude non-supported dt64/td64 dtypes
return idx_cls._simple_new(
arr, name=self.name, refs=self._references
)
return arr

result = self._data.view(cls)
else:
Expand Down
16 changes: 16 additions & 0 deletions pandas/tests/indexes/numeric/test_numeric.py
Original file line number Diff line number Diff line change
Expand Up @@ -527,3 +527,19 @@ def test_map_dtype_inference_overflows():
# TODO: we could plausibly try to infer down to int16 here
expected = Index([1000, 2000, 3000], dtype=np.int64)
tm.assert_index_equal(result, expected)


def test_view_to_datetimelike():
# GH#55710
idx = Index([1, 2, 3])
res = idx.view("m8[s]")
expected = pd.TimedeltaIndex(idx.values.view("m8[s]"))
tm.assert_index_equal(res, expected)

res2 = idx.view("m8[D]")
expected2 = idx.values.view("m8[D]")
tm.assert_numpy_array_equal(res2, expected2)

res3 = idx.view("M8[h]")
expected3 = idx.values.view("M8[h]")
tm.assert_numpy_array_equal(res3, expected3)