Skip to content

Backport PR #55337 on branch 2.1.x (DOC: Adjust user guide for CoW docs) #55532

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 75 additions & 55 deletions doc/source/user_guide/copy_on_write.rst
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,8 @@ Copy-on-Write (CoW)
*******************

Copy-on-Write was first introduced in version 1.5.0. Starting from version 2.0 most of the
optimizations that become possible through CoW are implemented and supported. A complete list
can be found at :ref:`Copy-on-Write optimizations <copy_on_write.optimizations>`.
optimizations that become possible through CoW are implemented and supported. All possible
optimizations are supported starting from pandas 2.1.

We expect that CoW will be enabled by default in version 3.0.

Expand Down Expand Up @@ -154,66 +154,86 @@ With copy on write this can be done by using ``loc``.

df.loc[df["bar"] > 5, "foo"] = 100

Read-only NumPy arrays
----------------------

Accessing the underlying NumPy array of a DataFrame will return a read-only array if the array
shares data with the initial DataFrame:

The array is a copy if the initial DataFrame consists of more than one array:


.. ipython:: python

df = pd.DataFrame({"a": [1, 2], "b": [1.5, 2.5]})
df.to_numpy()

The array shares data with the DataFrame if the DataFrame consists of only one NumPy array:

.. ipython:: python

df = pd.DataFrame({"a": [1, 2], "b": [3, 4]})
df.to_numpy()

This array is read-only, which means that it can't be modified inplace:

.. ipython:: python
:okexcept:

arr = df.to_numpy()
arr[0, 0] = 100

The same holds true for a Series, since a Series always consists of a single array.

There are two potential solution to this:

- Trigger a copy manually if you want to avoid updating DataFrames that share memory with your array.
- Make the array writeable. This is a more performant solution but circumvents Copy-on-Write rules, so
it should be used with caution.

.. ipython:: python

arr = df.to_numpy()
arr.flags.writeable = True
arr[0, 0] = 100
arr

Patterns to avoid
-----------------

No defensive copy will be performed if two objects share the same data while
you are modifying one object inplace.

.. ipython:: python

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = df.reset_index()
df2.iloc[0, 0] = 100

This creates two objects that share data and thus the setitem operation will trigger a
copy. This is not necessary if the initial object ``df`` isn't needed anymore.
Simply reassigning to the same variable will invalidate the reference that is
held by the object.

.. ipython:: python

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df = df.reset_index()
df.iloc[0, 0] = 100

No copy is necessary in this example.
Creating multiple references keeps unnecessary references alive
and thus will hurt performance with Copy-on-Write.

.. _copy_on_write.optimizations:

Copy-on-Write optimizations
---------------------------

A new lazy copy mechanism that defers the copy until the object in question is modified
and only if this object shares data with another object. This mechanism was added to
following methods:

- :meth:`DataFrame.reset_index` / :meth:`Series.reset_index`
- :meth:`DataFrame.set_index`
- :meth:`DataFrame.set_axis` / :meth:`Series.set_axis`
- :meth:`DataFrame.set_flags` / :meth:`Series.set_flags`
- :meth:`DataFrame.rename_axis` / :meth:`Series.rename_axis`
- :meth:`DataFrame.reindex` / :meth:`Series.reindex`
- :meth:`DataFrame.reindex_like` / :meth:`Series.reindex_like`
- :meth:`DataFrame.assign`
- :meth:`DataFrame.drop`
- :meth:`DataFrame.dropna` / :meth:`Series.dropna`
- :meth:`DataFrame.select_dtypes`
- :meth:`DataFrame.align` / :meth:`Series.align`
- :meth:`Series.to_frame`
- :meth:`DataFrame.rename` / :meth:`Series.rename`
- :meth:`DataFrame.add_prefix` / :meth:`Series.add_prefix`
- :meth:`DataFrame.add_suffix` / :meth:`Series.add_suffix`
- :meth:`DataFrame.drop_duplicates` / :meth:`Series.drop_duplicates`
- :meth:`DataFrame.droplevel` / :meth:`Series.droplevel`
- :meth:`DataFrame.reorder_levels` / :meth:`Series.reorder_levels`
- :meth:`DataFrame.between_time` / :meth:`Series.between_time`
- :meth:`DataFrame.filter` / :meth:`Series.filter`
- :meth:`DataFrame.head` / :meth:`Series.head`
- :meth:`DataFrame.tail` / :meth:`Series.tail`
- :meth:`DataFrame.isetitem`
- :meth:`DataFrame.pipe` / :meth:`Series.pipe`
- :meth:`DataFrame.pop` / :meth:`Series.pop`
- :meth:`DataFrame.replace` / :meth:`Series.replace`
- :meth:`DataFrame.shift` / :meth:`Series.shift`
- :meth:`DataFrame.sort_index` / :meth:`Series.sort_index`
- :meth:`DataFrame.sort_values` / :meth:`Series.sort_values`
- :meth:`DataFrame.squeeze` / :meth:`Series.squeeze`
- :meth:`DataFrame.swapaxes`
- :meth:`DataFrame.swaplevel` / :meth:`Series.swaplevel`
- :meth:`DataFrame.take` / :meth:`Series.take`
- :meth:`DataFrame.to_timestamp` / :meth:`Series.to_timestamp`
- :meth:`DataFrame.to_period` / :meth:`Series.to_period`
- :meth:`DataFrame.truncate`
- :meth:`DataFrame.iterrows`
- :meth:`DataFrame.tz_convert` / :meth:`Series.tz_localize`
- :meth:`DataFrame.fillna` / :meth:`Series.fillna`
- :meth:`DataFrame.interpolate` / :meth:`Series.interpolate`
- :meth:`DataFrame.ffill` / :meth:`Series.ffill`
- :meth:`DataFrame.bfill` / :meth:`Series.bfill`
- :meth:`DataFrame.where` / :meth:`Series.where`
- :meth:`DataFrame.infer_objects` / :meth:`Series.infer_objects`
- :meth:`DataFrame.astype` / :meth:`Series.astype`
- :meth:`DataFrame.convert_dtypes` / :meth:`Series.convert_dtypes`
- :meth:`DataFrame.join`
- :meth:`DataFrame.eval`
- :func:`concat`
- :func:`merge`
methods that don't require a copy of the underlying data. Popular examples are :meth:`DataFrame.drop` for ``axis=1``
and :meth:`DataFrame.rename`.

These methods return views when Copy-on-Write is enabled, which provides a significant
performance improvement compared to the regular execution.
Expand Down