Skip to content

Implement masked algorithm for mode #55340

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Nov 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.2.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -318,6 +318,7 @@ Performance improvements
- Performance improvement in :meth:`MultiIndex.get_indexer` when ``method`` is not ``None`` (:issue:`55839`)
- Performance improvement in :meth:`Series.duplicated` for pyarrow dtypes (:issue:`55255`)
- Performance improvement in :meth:`Series.str` methods (:issue:`55736`)
- Performance improvement in :meth:`Series.value_counts` and :meth:`Series.mode` for masked dtypes (:issue:`54984`, :issue:`55340`)
- Performance improvement in :meth:`SeriesGroupBy.idxmax`, :meth:`SeriesGroupBy.idxmin`, :meth:`DataFrameGroupBy.idxmax`, :meth:`DataFrameGroupBy.idxmin` (:issue:`54234`)
- Performance improvement when indexing into a non-unique index (:issue:`55816`)
- Performance improvement when indexing with more than 4 keys (:issue:`54550`)
Expand Down
10 changes: 7 additions & 3 deletions pandas/_libs/hashtable_func_helper.pxi.in
Original file line number Diff line number Diff line change
Expand Up @@ -404,12 +404,13 @@ def mode(ndarray[htfunc_t] values, bint dropna, const uint8_t[:] mask=None):
cdef:
ndarray[htfunc_t] keys
ndarray[htfunc_t] modes
ndarray[uint8_t] res_mask = None

int64_t[::1] counts
int64_t count, _, max_count = -1
Py_ssize_t nkeys, k, j = 0
Py_ssize_t nkeys, k, na_counter, j = 0

keys, counts, _ = value_count(values, dropna, mask=mask)
keys, counts, na_counter = value_count(values, dropna, mask=mask)
nkeys = len(keys)

modes = np.empty(nkeys, dtype=values.dtype)
Expand Down Expand Up @@ -440,7 +441,10 @@ def mode(ndarray[htfunc_t] values, bint dropna, const uint8_t[:] mask=None):

modes[j] = keys[k]

return modes[:j + 1]
if na_counter > 0:
res_mask = np.zeros(j+1, dtype=np.bool_)
res_mask[j] = True
return modes[:j + 1], res_mask


{{py:
Expand Down
5 changes: 4 additions & 1 deletion pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -1034,7 +1034,10 @@ def mode(

values = _ensure_data(values)

npresult = htable.mode(values, dropna=dropna, mask=mask)
npresult, res_mask = htable.mode(values, dropna=dropna, mask=mask)
if res_mask is not None:
return npresult, res_mask # type: ignore[return-value]

try:
npresult = np.sort(npresult)
except TypeError as err:
Expand Down
10 changes: 10 additions & 0 deletions pandas/core/arrays/masked.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,7 @@
from pandas.core.algorithms import (
factorize_array,
isin,
mode,
take,
)
from pandas.core.array_algos import (
Expand Down Expand Up @@ -1069,6 +1070,15 @@ def value_counts(self, dropna: bool = True) -> Series:
)
return Series(arr, index=index, name="count", copy=False)

def _mode(self, dropna: bool = True) -> Self:
if dropna:
result = mode(self._data, dropna=dropna, mask=self._mask)
res_mask = np.zeros(result.shape, dtype=np.bool_)
else:
result, res_mask = mode(self._data, dropna=dropna, mask=self._mask)
result = type(self)(result, res_mask) # type: ignore[arg-type]
return result[result.argsort()]

@doc(ExtensionArray.equals)
def equals(self, other) -> bool:
if type(self) != type(other):
Expand Down
10 changes: 5 additions & 5 deletions pandas/tests/libs/test_hashtable.py
Original file line number Diff line number Diff line change
Expand Up @@ -644,21 +644,21 @@ def test_mode(self, dtype, writable):
values = np.repeat(np.arange(N).astype(dtype), 5)
values[0] = 42
values.flags.writeable = writable
result = ht.mode(values, False)
result = ht.mode(values, False)[0]
assert result == 42

def test_mode_stable(self, dtype, writable):
values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype)
values.flags.writeable = writable
keys = ht.mode(values, False)
keys = ht.mode(values, False)[0]
tm.assert_numpy_array_equal(keys, values)


def test_modes_with_nans():
# GH42688, nans aren't mangled
nulls = [pd.NA, np.nan, pd.NaT, None]
values = np.array([True] + nulls * 2, dtype=np.object_)
modes = ht.mode(values, False)
modes = ht.mode(values, False)[0]
assert modes.size == len(nulls)


Expand Down Expand Up @@ -724,8 +724,8 @@ def test_ismember_no(self, dtype):

def test_mode(self, dtype):
values = np.array([42, np.nan, np.nan, np.nan], dtype=dtype)
assert ht.mode(values, True) == 42
assert np.isnan(ht.mode(values, False))
assert ht.mode(values, True)[0] == 42
assert np.isnan(ht.mode(values, False)[0])


def test_ismember_tuple_with_nans():
Expand Down
22 changes: 22 additions & 0 deletions pandas/tests/series/test_reductions.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,28 @@ def test_mode_extension_dtype(as_period):
tm.assert_series_equal(res, ser)


def test_mode_nullable_dtype(any_numeric_ea_dtype):
# GH#55340
ser = Series([1, 3, 2, pd.NA, 3, 2, pd.NA], dtype=any_numeric_ea_dtype)
result = ser.mode(dropna=False)
expected = Series([2, 3, pd.NA], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)

result = ser.mode(dropna=True)
expected = Series([2, 3], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)

ser[-1] = pd.NA

result = ser.mode(dropna=True)
expected = Series([2, 3], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)

result = ser.mode(dropna=False)
expected = Series([pd.NA], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(result, expected)


def test_reductions_td64_with_nat():
# GH#8617
ser = Series([0, pd.NaT], dtype="m8[ns]")
Expand Down