Skip to content

ENH: add Series.struct accessor for ArrowDtype[struct] #54977

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Sep 18, 2023
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions doc/source/reference/series.rst
Original file line number Diff line number Diff line change
Expand Up @@ -525,6 +525,29 @@ Sparse-dtype specific methods and attributes are provided under the
Series.sparse.from_coo
Series.sparse.to_coo


.. _api.series.struct:

Struct accessor
~~~~~~~~~~~~~~~

Arrow struct-dtype specific methods and attributes are provided under the
``Series.struct`` accessor.

.. autosummary::
:toctree: api/
:template: autosummary/accessor_attribute.rst

Series.struct.dtypes

.. autosummary::
:toctree: api/
:template: autosummary/accessor_method.rst

Series.struct.field
Series.struct.explode


.. _api.series.flags:

Flags
Expand Down
29 changes: 26 additions & 3 deletions doc/source/whatsnew/v2.2.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,10 +14,33 @@ including other versions of pandas.
Enhancements
~~~~~~~~~~~~

.. _whatsnew_220.enhancements.enhancement1:
.. _whatsnew_220.enhancements.struct_accessor:

enhancement1
^^^^^^^^^^^^
Series.struct accessor to with PyArrow structured data
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The ``Series.struct`` accessor provides attributes and methods for processing
data with ``struct[pyarrow]`` dtype Series. For example,
:meth:`Series.struct.explode` converts PyArrow structured data to a pandas
DataFrame. (:issue:`54938`)

.. ipython:: python

import pyarrow as pa
series = pd.Series(
[
{"project": "pandas", "version": "2.2.0"},
{"project": "numpy", "version": "1.25.2"},
{"project": "pyarrow", "version": "13.0.0"},
],
dtype=pd.ArrowDtype(
pa.struct([
("project", pa.string()),
("version", pa.string()),
])
),
)
series.struct.explode()

.. _whatsnew_220.enhancements.enhancement2:

Expand Down
3 changes: 2 additions & 1 deletion pandas/core/arrays/arrow/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from pandas.core.arrays.arrow.accessors import StructAccessor
from pandas.core.arrays.arrow.array import ArrowExtensionArray

__all__ = ["ArrowExtensionArray"]
__all__ = ["ArrowExtensionArray", "StructAccessor"]
196 changes: 196 additions & 0 deletions pandas/core/arrays/arrow/accessors.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,196 @@
"""Accessors for arrow-backed data."""

from __future__ import annotations

from typing import TYPE_CHECKING

from pandas.compat import pa_version_under7p0

if not pa_version_under7p0:
import pyarrow as pa
import pyarrow.compute as pc

from pandas.core.dtypes.dtypes import ArrowDtype

if TYPE_CHECKING:
from pandas import (
DataFrame,
Series,
)


class StructAccessor:
"""
Accessor object for structured data properties of the Series values.

Parameters
----------
data : Series
Series containing Arrow struct data.
"""

_validation_msg = (
"Can only use the '.struct' accessor with 'struct[pyarrow]' dtype, not {dtype}."
)

def __init__(self, data=None) -> None:
self._parent = data
self._validate(data)

def _validate(self, data):
dtype = data.dtype
if not isinstance(dtype, ArrowDtype):
# Raise AttributeError so that inspect can handle non-struct Series.
raise AttributeError(self._validation_msg.format(dtype=dtype))

if not pa.types.is_struct(dtype.pyarrow_dtype):
# Raise AttributeError so that inspect can handle non-struct Series.
raise AttributeError(self._validation_msg.format(dtype=dtype))

@property
def dtypes(self) -> Series:
"""
Return the dtype object of each child field of the struct.

Returns
-------
pandas.Series
The data type of each child field.

Examples
--------
>>> import pyarrow as pa
>>> s = pd.Series(
... [
... {"version": 1, "project": "pandas"},
... {"version": 2, "project": "pandas"},
... {"version": 1, "project": "numpy"},
... ],
... dtype=pd.ArrowDtype(pa.struct(
... [("version", pa.int64()), ("project", pa.string())]
... ))
... )
>>> s.struct.dtypes
version int64[pyarrow]
project string[pyarrow]
dtype: object
"""
from pandas import (
Index,
Series,
)

pa_type = self._parent.dtype.pyarrow_dtype
types = [ArrowDtype(struct.type) for struct in pa_type]
names = [struct.name for struct in pa_type]
return Series(types, index=Index(names))

def field(self, name_or_index: str | int) -> Series:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I see that https://arrow.apache.org/docs/python/generated/pyarrow.compute.struct_field.html says you can do things like struct_field(array, indices=['a', 'b']) to do nested lookups like a.b. Any reason to disallow that?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That's a good idea. Extracting the name to use for the Series with such inputs is turning out to be non-trivial though. Perhaps best left as a follow-up enhancement?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A follow-up makes sense to me.

"""
Extract a child field of a struct as a Series.

Parameters
----------
name_or_index : str | int
Name or index of the child field to extract.

Returns
-------
pandas.Series
The data corresponding to the selected child field.

See Also
--------
Series.struct.explode : Return all child fields as a DataFrame.

Examples
--------
>>> import pyarrow as pa
>>> s = pd.Series(
... [
... {"version": 1, "project": "pandas"},
... {"version": 2, "project": "pandas"},
... {"version": 1, "project": "numpy"},
... ],
... dtype=pd.ArrowDtype(pa.struct(
... [("version", pa.int64()), ("project", pa.string())]
... ))
... )

Extract by field name.

>>> s.struct.field("project")
0 pandas
1 pandas
2 numpy
Name: project, dtype: string[pyarrow]

Extract by field index.

>>> s.struct.field(0)
0 1
1 2
2 1
Name: version, dtype: int64[pyarrow]
"""
from pandas import Series

pa_arr = self._parent.array._pa_array
if isinstance(name_or_index, int):
index = name_or_index
elif isinstance(name_or_index, str):
index = pa_arr.type.get_field_index(name_or_index)
else:
raise ValueError(
"name_or_index must be an int or str, "
f"got {type(name_or_index).__name__}"
)

pa_field = pa_arr.type[index]
field_arr = pc.struct_field(pa_arr, [index])
return Series(
field_arr,
dtype=ArrowDtype(field_arr.type),
index=self._parent.index,
name=pa_field.name,
)

def explode(self) -> DataFrame:
"""
Extract all child fields of a struct as a DataFrame.

Returns
-------
pandas.DataFrame
The data corresponding to all child fields.

See Also
--------
Series.struct.field : Return a single child field as a Series.

Examples
--------
>>> import pyarrow as pa
>>> s = pd.Series(
... [
... {"version": 1, "project": "pandas"},
... {"version": 2, "project": "pandas"},
... {"version": 1, "project": "numpy"},
... ],
... dtype=pd.ArrowDtype(pa.struct(
... [("version", pa.int64()), ("project", pa.string())]
... ))
... )

>>> s.struct.explode()
version project
0 1 pandas
1 2 pandas
2 1 numpy
"""
from pandas import concat

pa_type = self._parent.dtype.pyarrow_dtype
return concat(
[self.field(i) for i in range(pa_type.num_fields)], axis="columns"
)
2 changes: 2 additions & 0 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,7 @@
from pandas.core.accessor import CachedAccessor
from pandas.core.apply import SeriesApply
from pandas.core.arrays import ExtensionArray
from pandas.core.arrays.arrow import StructAccessor
from pandas.core.arrays.categorical import CategoricalAccessor
from pandas.core.arrays.sparse import SparseAccessor
from pandas.core.construction import (
Expand Down Expand Up @@ -5787,6 +5788,7 @@ def to_period(self, freq: str | None = None, copy: bool | None = None) -> Series
cat = CachedAccessor("cat", CategoricalAccessor)
plot = CachedAccessor("plot", pandas.plotting.PlotAccessor)
sparse = CachedAccessor("sparse", SparseAccessor)
struct = CachedAccessor("struct", StructAccessor)

# ----------------------------------------------------------------------
# Add plotting methods to Series
Expand Down
Loading