Skip to content

BUG: pd.to_timedelta handles missing data #5438

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 6, 2013
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/release.rst
Original file line number Diff line number Diff line change
Expand Up @@ -771,6 +771,7 @@ Bug Fixes
- Fix empty series not printing name in repr (:issue:`4651`)
- Make tests create temp files in temp directory by default. (:issue:`5419`)
- ``pd.to_timedelta`` of a scalar returns a scalar (:issue:`5410`)
- ``pd.to_timedelta`` accepts ``NaN`` and ``NaT``, returning ``NaT`` instead of raising (:issue:`5437`)

pandas 0.12.0
-------------
Expand Down
20 changes: 15 additions & 5 deletions pandas/core/internals.py
Original file line number Diff line number Diff line change
Expand Up @@ -1162,15 +1162,25 @@ def _try_fill(self, value):

def _try_coerce_args(self, values, other):
""" provide coercion to our input arguments
we are going to compare vs i8, so coerce to integer
values is always ndarra like, other may not be """
values = values.view('i8')
we are going to compare vs i8, so coerce to floats
repring NaT with np.nan so nans propagate
values is always ndarray like, other may not be """
def masker(v):
mask = isnull(v)
v = v.view('i8').astype('float64')
v[mask] = np.nan
return v

values = masker(values)

if isnull(other) or (np.isscalar(other) and other == tslib.iNaT):
other = tslib.iNaT
other = np.nan
elif isinstance(other, np.timedelta64):
other = _coerce_scalar_to_timedelta_type(other,unit='s').item()
if other == tslib.iNaT:
other = np.nan
else:
other = other.view('i8')
other = masker(other)

return values, other

Expand Down
26 changes: 21 additions & 5 deletions pandas/core/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -255,7 +255,7 @@ def __init__(self, left, right, name):
self.name = name

lvalues = self._convert_to_array(left, name=name)
rvalues = self._convert_to_array(right, name=name)
rvalues = self._convert_to_array(right, name=name, other=lvalues)

self.is_timedelta_lhs = com.is_timedelta64_dtype(left)
self.is_datetime_lhs = com.is_datetime64_dtype(left)
Expand Down Expand Up @@ -317,17 +317,24 @@ def _validate(self):
'of a series/ndarray of type datetime64[ns] '
'or a timedelta')

def _convert_to_array(self, values, name=None):
def _convert_to_array(self, values, name=None, other=None):
"""converts values to ndarray"""
from pandas.tseries.timedeltas import _possibly_cast_to_timedelta

coerce = 'compat' if pd._np_version_under1p7 else True
if not is_list_like(values):
values = np.array([values])
inferred_type = lib.infer_dtype(values)

if inferred_type in ('datetime64', 'datetime', 'date', 'time'):
# if we have a other of timedelta, but use pd.NaT here we
# we are in the wrong path
if other is not None and other.dtype == 'timedelta64[ns]' and all(isnull(v) for v in values):
values = np.empty(values.shape,dtype=other.dtype)
values[:] = tslib.iNaT

# a datetlike
if not (isinstance(values, (pa.Array, pd.Series)) and
elif not (isinstance(values, (pa.Array, pd.Series)) and
com.is_datetime64_dtype(values)):
values = tslib.array_to_datetime(values)
elif isinstance(values, pd.DatetimeIndex):
Expand All @@ -354,6 +361,15 @@ def _convert_to_array(self, values, name=None):
', '.join([com.pprint_thing(v)
for v in values[mask]])))
values = _possibly_cast_to_timedelta(os, coerce=coerce)
elif inferred_type == 'floating':

# all nan, so ok, use the other dtype (e.g. timedelta or datetime)
if isnull(values).all():
values = np.empty(values.shape,dtype=other.dtype)
values[:] = tslib.iNaT
else:
raise TypeError("incompatible type [{0}] for a datetime/timedelta"
" operation".format(pa.array(values).dtype))
else:
raise TypeError("incompatible type [{0}] for a datetime/timedelta"
" operation".format(pa.array(values).dtype))
Expand Down Expand Up @@ -452,6 +468,8 @@ def na_op(x, y):

def wrapper(left, right, name=name):

if isinstance(right, pd.DataFrame):
return NotImplemented
time_converted = _TimeOp.maybe_convert_for_time_op(left, right, name)

if time_converted is None:
Expand Down Expand Up @@ -488,8 +506,6 @@ def wrapper(left, right, name=name):

return left._constructor(wrap_results(arr), index=index,
name=name, dtype=dtype)
elif isinstance(right, pd.DataFrame):
return NotImplemented
else:
# scalars
if hasattr(lvalues, 'values'):
Expand Down
116 changes: 116 additions & 0 deletions pandas/tseries/tests/test_timedeltas.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,122 @@ def test_timedelta_ops(self):
expected = to_timedelta('00:00:08')
tm.assert_almost_equal(result, expected)

def test_to_timedelta_on_missing_values(self):
_skip_if_numpy_not_friendly()

# GH5438
timedelta_NaT = np.timedelta64('NaT')

actual = pd.to_timedelta(Series(['00:00:01', np.nan]))
expected = Series([np.timedelta64(1000000000, 'ns'), timedelta_NaT], dtype='<m8[ns]')
assert_series_equal(actual, expected)

actual = pd.to_timedelta(Series(['00:00:01', pd.NaT]))
assert_series_equal(actual, expected)

actual = pd.to_timedelta(np.nan)
self.assert_(actual == timedelta_NaT)

actual = pd.to_timedelta(pd.NaT)
self.assert_(actual == timedelta_NaT)

def test_timedelta_ops_with_missing_values(self):
_skip_if_numpy_not_friendly()

# setup
s1 = pd.to_timedelta(Series(['00:00:01']))
s2 = pd.to_timedelta(Series(['00:00:02']))
sn = pd.to_timedelta(Series([pd.NaT]))
df1 = DataFrame(['00:00:01']).apply(pd.to_timedelta)
df2 = DataFrame(['00:00:02']).apply(pd.to_timedelta)
dfn = DataFrame([pd.NaT]).apply(pd.to_timedelta)
scalar1 = pd.to_timedelta('00:00:01')
scalar2 = pd.to_timedelta('00:00:02')
timedelta_NaT = pd.to_timedelta('NaT')
NA = np.nan

actual = scalar1 + scalar1
self.assert_(actual == scalar2)
actual = scalar2 - scalar1
self.assert_(actual == scalar1)

actual = s1 + s1
assert_series_equal(actual, s2)
actual = s2 - s1
assert_series_equal(actual, s1)

actual = s1 + scalar1
assert_series_equal(actual, s2)
actual = s2 - scalar1
assert_series_equal(actual, s1)

actual = s1 + timedelta_NaT
assert_series_equal(actual, sn)
actual = s1 - timedelta_NaT
assert_series_equal(actual, sn)

actual = s1 + NA
assert_series_equal(actual, sn)
actual = s1 - NA
assert_series_equal(actual, sn)

actual = s1 + pd.NaT # NaT is datetime, not timedelta
assert_series_equal(actual, sn)
actual = s2 - pd.NaT
assert_series_equal(actual, sn)

actual = s1 + df1
assert_frame_equal(actual, df2)
actual = s2 - df1
assert_frame_equal(actual, df1)
actual = df1 + s1
assert_frame_equal(actual, df2)
actual = df2 - s1
assert_frame_equal(actual, df1)

actual = df1 + df1
assert_frame_equal(actual, df2)
actual = df2 - df1
assert_frame_equal(actual, df1)

actual = df1 + scalar1
assert_frame_equal(actual, df2)
actual = df2 - scalar1
assert_frame_equal(actual, df1)

actual = df1 + timedelta_NaT
assert_frame_equal(actual, dfn)
actual = df1 - timedelta_NaT
assert_frame_equal(actual, dfn)

actual = df1 + NA
assert_frame_equal(actual, dfn)
actual = df1 - NA
assert_frame_equal(actual, dfn)

actual = df1 + pd.NaT # NaT is datetime, not timedelta
assert_frame_equal(actual, dfn)
actual = df1 - pd.NaT
assert_frame_equal(actual, dfn)

def test_apply_to_timedelta(self):
_skip_if_numpy_not_friendly()

timedelta_NaT = pd.to_timedelta('NaT')

list_of_valid_strings = ['00:00:01', '00:00:02']
a = pd.to_timedelta(list_of_valid_strings)
b = Series(list_of_valid_strings).apply(pd.to_timedelta)
# Can't compare until apply on a Series gives the correct dtype
# assert_series_equal(a, b)

list_of_strings = ['00:00:01', np.nan, pd.NaT, timedelta_NaT]
a = pd.to_timedelta(list_of_strings)
b = Series(list_of_strings).apply(pd.to_timedelta)
# Can't compare until apply on a Series gives the correct dtype
# assert_series_equal(a, b)


if __name__ == '__main__':
nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'],
exit=False)
4 changes: 3 additions & 1 deletion pandas/tseries/timedeltas.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
import pandas.tslib as tslib
from pandas import compat, _np_version_under1p7
from pandas.core.common import (ABCSeries, is_integer, is_timedelta64_dtype,
_values_from_object, is_list_like)
_values_from_object, is_list_like, isnull)

repr_timedelta = tslib.repr_timedelta64
repr_timedelta64 = tslib.repr_timedelta64
Expand Down Expand Up @@ -84,6 +84,8 @@ def conv(v):
r = conv(r)
elif r == tslib.iNaT:
return r
elif isnull(r):
return np.timedelta64('NaT')
elif isinstance(r, np.timedelta64):
r = r.astype("m8[{0}]".format(unit.lower()))
elif is_integer(r):
Expand Down