Skip to content

TST: Add tests to ensure proper conversion of datetime64/timedelta64/timestamp/duration to and from pyarrow #54356

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Aug 9, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
278 changes: 278 additions & 0 deletions pandas/tests/dtypes/test_dtypes.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import re

import numpy as np
import pyarrow as pa
import pytest
import pytz

Expand Down Expand Up @@ -32,9 +33,14 @@
CategoricalIndex,
DatetimeIndex,
IntervalIndex,
NaT,
Series,
SparseDtype,
Timedelta,
Timestamp,
concat,
date_range,
timedelta_range,
)
import pandas._testing as tm
from pandas.core.arrays.sparse import SparseArray
Expand Down Expand Up @@ -1193,3 +1199,275 @@ def test_multi_column_dtype_assignment():

df["b"] = 0
tm.assert_frame_equal(df, expected)


@pytest.mark.parametrize(
"unit",
[
"s",
"ms",
"us",
"ns",
],
)
def test_convert_dtypes_timestamp(unit):
series = Series(date_range("2020-01-01", "2020-01-02", freq="1min"))
expected = series.astype(f"timestamp[{unit}][pyarrow]")

converted = expected.convert_dtypes(dtype_backend="pyarrow")

tm.assert_series_equal(expected, converted)


@pytest.mark.parametrize(
"unit",
[
"s",
"ms",
"us",
"ns",
],
)
def test_convert_dtypes_duration(unit):
series = Series(timedelta_range("1s", "10s", freq="1s"))
expected = series.astype(f"duration[{unit}][pyarrow]")

converted = expected.convert_dtypes(dtype_backend="pyarrow")

tm.assert_series_equal(expected, converted)


@pytest.mark.parametrize(
"timestamp_unit, duration_unit",
[
("s", "s"),
("s", "ms"),
("s", "us"),
("s", "ns"),
("ms", "s"),
("ms", "ms"),
("ms", "us"),
("ms", "ns"),
("us", "s"),
("us", "ms"),
("us", "us"),
("us", "ns"),
("ns", "s"),
("ns", "ms"),
("ns", "us"),
("ns", "ns"),
],
)
def test_convert_dtypes_timestamp_and_duration(timestamp_unit, duration_unit):
timestamp_series = Series(
date_range("2020-01-01", "2020-01-02", freq="1min")
).astype(f"timestamp[{timestamp_unit}][pyarrow]")
duration_series = Series(timedelta_range("1s", "10s", freq="1s")).astype(
f"duration[{duration_unit}][pyarrow]"
)

df = concat([timestamp_series, duration_series], axis=1)
converted = df.convert_dtypes(dtype_backend="pyarrow")

tm.assert_frame_equal(df, converted)


@pytest.mark.parametrize(
"unit",
[
"s",
"ms",
"us",
"ns",
],
)
def test_convert_dtypes_datetime(unit):
series = Series(date_range("2020-01-01", "2020-01-02", freq="1min")).astype(
f"datetime64[{unit}]"
)

expected = series.astype(f"timestamp[{unit}][pyarrow]")
converted = series.convert_dtypes(dtype_backend="pyarrow")

tm.assert_series_equal(expected, converted)


@pytest.mark.parametrize(
"unit",
[
"s",
"ms",
"us",
"ns",
],
)
def test_convert_dtypes_timedelta(unit):
series = Series(timedelta_range("1s", "10s", freq="1s")).astype(
f"timedelta64[{unit}]"
)

expected = series.astype(f"duration[{unit}][pyarrow]")
converted = series.convert_dtypes(dtype_backend="pyarrow")

tm.assert_series_equal(expected, converted)


@pytest.mark.parametrize(
"unit",
[
"s",
"ms",
"us",
"ns",
],
)
def test_pa_table_to_pandas_datetime(unit):
df = pd.DataFrame(date_range("2020-01-01", "2020-01-02", freq="1min")).astype(
f"datetime64[{unit}]"
)
df_converted_to_pa = pa.table(df)
df_back_to_pd = df_converted_to_pa.to_pandas()

tm.assert_frame_equal(df, df_back_to_pd)


@pytest.mark.parametrize(
"unit",
[
"s",
"ms",
"us",
"ns",
],
)
def test_pa_table_to_pandas_timedelta(unit):
df = pd.DataFrame(timedelta_range("1s", "10s", freq="1s")).astype(
f"timedelta64[{unit}]"
)
df_converted_to_pa = pa.table(df)
df_back_to_pd = df_converted_to_pa.to_pandas()

tm.assert_frame_equal(df, df_back_to_pd)


@pytest.mark.parametrize(
"datetime_unit, timedelta_unit",
[
("s", "s"),
("s", "ms"),
("s", "us"),
("s", "ns"),
("ms", "s"),
("ms", "ms"),
("ms", "us"),
("ms", "ns"),
("us", "s"),
("us", "ms"),
("us", "us"),
("us", "ns"),
("ns", "s"),
("ns", "ms"),
("ns", "us"),
("ns", "ns"),
],
)
def test_pa_table_and_to_pandas_datetime_and_timedelta(datetime_unit, timedelta_unit):
timestamp_series = Series(
date_range("2020-01-01", "2020-01-02", freq="1min")
).astype(f"datetime64[{datetime_unit}]")
duration_series = Series(timedelta_range("1s", "10s", freq="1s")).astype(
f"timedelta64[{timedelta_unit}]"
)

df = concat([timestamp_series, duration_series], axis=1)
df_converted_to_pa = pa.table(df)
df_back_to_pd = df_converted_to_pa.to_pandas()

tm.assert_frame_equal(df, df_back_to_pd)


@pytest.mark.parametrize(
"unit",
[
"s",
"ms",
"us",
"ns",
],
)
def test_pa_table_to_pandas_timestamp(unit):
df = pd.DataFrame(date_range("2020-01-01", "2020-01-02", freq="1min")).astype(
f"timestamp[{unit}][pyarrow]"
)
df_converted_to_pa = pa.table(df)
df_back_to_pd = df_converted_to_pa.to_pandas()

tm.assert_frame_equal(df, df_back_to_pd)


@pytest.mark.parametrize(
"unit",
[
"s",
"ms",
"us",
"ns",
],
)
def test_pa_table_to_pandas_duration(unit):
df = pd.DataFrame(timedelta_range("1s", "10s", freq="1s")).astype(
f"duration[{unit}][pyarrow]"
)
df_converted_to_pa = pa.table(df)
df_back_to_pd = df_converted_to_pa.to_pandas()

tm.assert_frame_equal(df, df_back_to_pd)


@pytest.mark.parametrize(
"timestamp_unit, duration_unit",
[
("s", "s"),
("s", "ms"),
("s", "us"),
("s", "ns"),
("ms", "s"),
("ms", "ms"),
("ms", "us"),
("ms", "ns"),
("us", "s"),
("us", "ms"),
("us", "us"),
("us", "ns"),
("ns", "s"),
("ns", "ms"),
("ns", "us"),
("ns", "ns"),
],
)
def test_pa_table_and_to_pandas_timestamp_and_duration(timestamp_unit, duration_unit):
timestamp_series = Series(
date_range("2020-01-01", "2020-01-02", freq="1min")
).astype(f"timestamp[{timestamp_unit}][pyarrow]")
duration_series = Series(timedelta_range("1s", "10s", freq="1s")).astype(
f"duration[{duration_unit}][pyarrow]"
)

df = concat([timestamp_series, duration_series], axis=1)
df_converted_to_pa = pa.table(df)
df_back_to_pd = df_converted_to_pa.to_pandas()

tm.assert_frame_equal(df, df_back_to_pd)


def test_conversion_with_missing_values():
df = pd.DataFrame(
{
"timestamp_col": [Timestamp("2020-01-01"), NaT],
"duration_col": [Timedelta("1s"), NaT],
}
)
df_coverted_to_pa = pa.table(df)
df_back_to_pd = df_coverted_to_pa.to_pandas()

tm.assert_frame_equal(df, df_back_to_pd)