Skip to content

CLN/ASV: Remove NumPy/built-in aliases in ASVs #54316

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions asv_bench/benchmarks/frame_methods.py
Original file line number Diff line number Diff line change
Expand Up @@ -511,8 +511,8 @@ def time_apply_axis_1(self):
def time_apply_lambda_mean(self):
self.df.apply(lambda x: x.mean())

def time_apply_np_mean(self):
self.df.apply(np.mean)
def time_apply_str_mean(self):
self.df.apply("mean")

def time_apply_pass_thru(self):
self.df.apply(lambda x: x)
Expand Down
23 changes: 9 additions & 14 deletions asv_bench/benchmarks/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -329,16 +329,11 @@ def time_different_str_functions(self, df):
{"value1": "mean", "value2": "var", "value3": "sum"}
)

def time_different_numpy_functions(self, df):
df.groupby(["key1", "key2"]).agg(
{"value1": np.mean, "value2": np.var, "value3": np.sum}
)

def time_different_python_functions_multicol(self, df):
df.groupby(["key1", "key2"]).agg([sum, min, max])
def time_different_str_functions_multicol(self, df):
df.groupby(["key1", "key2"]).agg(["sum", "min", "max"])

def time_different_python_functions_singlecol(self, df):
df.groupby("key1")[["value1", "value2", "value3"]].agg([sum, min, max])
def time_different_str_functions_singlecol(self, df):
df.groupby("key1").agg({"value1": "mean", "value2": "var", "value3": "sum"})


class GroupStrings:
Expand Down Expand Up @@ -381,8 +376,8 @@ def time_cython_sum(self, df):
def time_col_select_lambda_sum(self, df):
df.groupby(["key1", "key2"])["data1"].agg(lambda x: x.values.sum())

def time_col_select_numpy_sum(self, df):
df.groupby(["key1", "key2"])["data1"].agg(np.sum)
def time_col_select_str_sum(self, df):
df.groupby(["key1", "key2"])["data1"].agg("sum")


class Size:
Expand Down Expand Up @@ -894,8 +889,8 @@ def setup(self):
def time_transform_lambda_max(self):
self.df.groupby(level="lev1").transform(lambda x: max(x))

def time_transform_ufunc_max(self):
self.df.groupby(level="lev1").transform(np.max)
def time_transform_str_max(self):
self.df.groupby(level="lev1").transform("max")

def time_transform_lambda_max_tall(self):
self.df_tall.groupby(level=0).transform(lambda x: np.max(x, axis=0))
Expand Down Expand Up @@ -926,7 +921,7 @@ def setup(self):
self.df = DataFrame({"signal": np.random.rand(N)})

def time_transform_mean(self):
self.df["signal"].groupby(self.g).transform(np.mean)
self.df["signal"].groupby(self.g).transform("mean")


class TransformNaN:
Expand Down
4 changes: 2 additions & 2 deletions asv_bench/benchmarks/reshape.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,15 +218,15 @@ def time_pivot_table_margins(self):

def time_pivot_table_categorical(self):
self.df2.pivot_table(
index="col1", values="col3", columns="col2", aggfunc=np.sum, fill_value=0
index="col1", values="col3", columns="col2", aggfunc="sum", fill_value=0
)

def time_pivot_table_categorical_observed(self):
self.df2.pivot_table(
index="col1",
values="col3",
columns="col2",
aggfunc=np.sum,
aggfunc="sum",
fill_value=0,
observed=True,
)
Expand Down