Skip to content

DOC: Fixing EX01 - Added examples #53564

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jun 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 0 additions & 8 deletions ci/code_checks.sh
Original file line number Diff line number Diff line change
Expand Up @@ -267,10 +267,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
pandas.core.groupby.DataFrameGroupBy.ffill \
pandas.core.groupby.DataFrameGroupBy.median \
pandas.core.groupby.DataFrameGroupBy.ohlc \
pandas.core.groupby.DataFrameGroupBy.pct_change \
pandas.core.groupby.DataFrameGroupBy.sem \
pandas.core.groupby.DataFrameGroupBy.shift \
pandas.core.groupby.DataFrameGroupBy.size \
pandas.core.groupby.DataFrameGroupBy.skew \
pandas.core.groupby.DataFrameGroupBy.std \
pandas.core.groupby.DataFrameGroupBy.var \
Expand All @@ -280,10 +276,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
pandas.core.groupby.SeriesGroupBy.median \
pandas.core.groupby.SeriesGroupBy.nunique \
pandas.core.groupby.SeriesGroupBy.ohlc \
pandas.core.groupby.SeriesGroupBy.pct_change \
pandas.core.groupby.SeriesGroupBy.sem \
pandas.core.groupby.SeriesGroupBy.shift \
pandas.core.groupby.SeriesGroupBy.size \
pandas.core.groupby.SeriesGroupBy.skew \
pandas.core.groupby.SeriesGroupBy.std \
pandas.core.groupby.SeriesGroupBy.var \
Expand Down
146 changes: 144 additions & 2 deletions pandas/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -2509,6 +2509,40 @@ def sem(self, ddof: int = 1, numeric_only: bool = False):
-------
Series or DataFrame
Standard error of the mean of values within each group.

Examples
--------
For SeriesGroupBy:

>>> lst = ['a', 'a', 'b', 'b']
>>> ser = pd.Series([5, 10, 8, 14], index=lst)
>>> ser
a 5
a 10
b 8
b 14
dtype: int64
>>> ser.groupby(level=0).sem()
a 2.5
b 3.0
dtype: float64

For DataFrameGroupBy:

>>> data = [[1, 12, 11], [1, 15, 2], [2, 5, 8], [2, 6, 12]]
>>> df = pd.DataFrame(data, columns=["a", "b", "c"],
... index=["tuna", "salmon", "catfish", "goldfish"])
>>> df
a b c
tuna 1 12 11
salmon 1 15 2
catfish 2 5 8
goldfish 2 6 12
>>> df.groupby("a").sem()
b c
a
1 1.5 4.5
2 0.5 2.0
"""
if numeric_only and self.obj.ndim == 1 and not is_numeric_dtype(self.obj.dtype):
raise TypeError(
Expand All @@ -2524,7 +2558,7 @@ def sem(self, ddof: int = 1, numeric_only: bool = False):

@final
@Substitution(name="groupby")
@Appender(_common_see_also)
@Substitution(see_also=_common_see_also)
def size(self) -> DataFrame | Series:
"""
Compute group sizes.
Expand All @@ -2534,6 +2568,37 @@ def size(self) -> DataFrame | Series:
DataFrame or Series
Number of rows in each group as a Series if as_index is True
or a DataFrame if as_index is False.
%(see_also)s
Examples
--------

For SeriesGroupBy:

>>> lst = ['a', 'a', 'b']
>>> ser = pd.Series([1, 2, 3], index=lst)
>>> ser
a 1
a 2
b 3
dtype: int64
>>> ser.groupby(level=0).size()
a 2
b 1
dtype: int64

>>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]]
>>> df = pd.DataFrame(data, columns=["a", "b", "c"],
... index=["owl", "toucan", "eagle"])
>>> df
a b c
owl 1 2 3
toucan 1 5 6
eagle 7 8 9
>>> df.groupby("a").size()
a
1 2
7 1
dtype: int64
"""
result = self.grouper.size()

Expand Down Expand Up @@ -4439,6 +4504,44 @@ def shift(
See Also
--------
Index.shift : Shift values of Index.

Examples
--------

For SeriesGroupBy:

>>> lst = ['a', 'a', 'b', 'b']
>>> ser = pd.Series([1, 2, 3, 4], index=lst)
>>> ser
a 1
a 2
b 3
b 4
dtype: int64
>>> ser.groupby(level=0).shift(1)
a NaN
a 1.0
b NaN
b 3.0
dtype: float64

For DataFrameGroupBy:

>>> data = [[1, 2, 3], [1, 5, 6], [2, 5, 8], [2, 6, 9]]
>>> df = pd.DataFrame(data, columns=["a", "b", "c"],
... index=["tuna", "salmon", "catfish", "goldfish"])
>>> df
a b c
tuna 1 2 3
salmon 1 5 6
catfish 2 5 8
goldfish 2 6 9
>>> df.groupby("a").shift(1)
b c
tuna NaN NaN
salmon 2.0 3.0
catfish NaN NaN
goldfish 5.0 8.0
"""
if axis is not lib.no_default:
axis = self.obj._get_axis_number(axis)
Expand Down Expand Up @@ -4519,7 +4622,7 @@ def diff(

@final
@Substitution(name="groupby")
@Appender(_common_see_also)
@Substitution(see_also=_common_see_also)
def pct_change(
self,
periods: int = 1,
Expand All @@ -4535,7 +4638,46 @@ def pct_change(
-------
Series or DataFrame
Percentage changes within each group.
%(see_also)s
Examples
--------

For SeriesGroupBy:

>>> lst = ['a', 'a', 'b', 'b']
>>> ser = pd.Series([1, 2, 3, 4], index=lst)
>>> ser
a 1
a 2
b 3
b 4
dtype: int64
>>> ser.groupby(level=0).pct_change()
a NaN
a 1.000000
b NaN
b 0.333333
dtype: float64

For DataFrameGroupBy:

>>> data = [[1, 2, 3], [1, 5, 6], [2, 5, 8], [2, 6, 9]]
>>> df = pd.DataFrame(data, columns=["a", "b", "c"],
... index=["tuna", "salmon", "catfish", "goldfish"])
>>> df
a b c
tuna 1 2 3
salmon 1 5 6
catfish 2 5 8
goldfish 2 6 9
>>> df.groupby("a").pct_change()
b c
tuna NaN NaN
salmon 1.5 1.000
catfish NaN NaN
goldfish 0.2 0.125
"""

if axis is not lib.no_default:
axis = self.obj._get_axis_number(axis)
self._deprecate_axis(axis, "pct_change")
Expand Down