Skip to content

BUG: incorrect is_array_like checks #53057

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pandas/_typing.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@

RandomState = Union[
int,
ArrayLike,
np.ndarray,
np.random.Generator,
np.random.BitGenerator,
np.random.RandomState,
Expand Down
35 changes: 17 additions & 18 deletions pandas/core/arrays/arrow/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,22 +18,6 @@
import numpy as np

from pandas._libs import lib
from pandas._typing import (
ArrayLike,
AxisInt,
Dtype,
FillnaOptions,
Iterator,
NpDtype,
PositionalIndexer,
Scalar,
Self,
SortKind,
TakeIndexer,
TimeAmbiguous,
TimeNonexistent,
npt,
)
from pandas.compat import (
pa_version_under7p0,
pa_version_under8p0,
Expand Down Expand Up @@ -140,8 +124,22 @@ def floordiv_compat(

if TYPE_CHECKING:
from pandas._typing import (
ArrayLike,
AxisInt,
Dtype,
FillnaOptions,
Iterator,
NpDtype,
NumpySorter,
NumpyValueArrayLike,
PositionalIndexer,
Scalar,
Self,
SortKind,
TakeIndexer,
TimeAmbiguous,
TimeNonexistent,
npt,
)

from pandas import Series
Expand Down Expand Up @@ -805,8 +803,9 @@ def fillna(
fallback_performancewarning()
return super().fillna(value=value, method=method, limit=limit)

if is_array_like(value):
value = cast(ArrayLike, value)
if isinstance(value, (np.ndarray, ExtensionArray)):
# Similar to check_value_size, but we do not mask here since we may
# end up passing it to the super() method.
if len(value) != len(self):
raise ValueError(
f"Length of 'value' does not match. Got ({len(value)}) "
Expand Down
28 changes: 4 additions & 24 deletions pandas/core/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,11 +33,9 @@

from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
from pandas.core.dtypes.common import (
is_array_like,
is_bool_dtype,
is_integer,
)
from pandas.core.dtypes.dtypes import ExtensionDtype
from pandas.core.dtypes.generic import (
ABCExtensionArray,
ABCIndex,
Expand Down Expand Up @@ -120,9 +118,7 @@ def is_bool_indexer(key: Any) -> bool:
check_array_indexer : Check that `key` is a valid array to index,
and convert to an ndarray.
"""
if isinstance(key, (ABCSeries, np.ndarray, ABCIndex)) or (
is_array_like(key) and isinstance(key.dtype, ExtensionDtype)
):
if isinstance(key, (ABCSeries, np.ndarray, ABCIndex, ABCExtensionArray)):
if key.dtype == np.object_:
key_array = np.asarray(key)

Expand Down Expand Up @@ -420,7 +416,7 @@ def random_state(state: np.random.Generator) -> np.random.Generator:

@overload
def random_state(
state: int | ArrayLike | np.random.BitGenerator | np.random.RandomState | None,
state: int | np.ndarray | np.random.BitGenerator | np.random.RandomState | None,
) -> np.random.RandomState:
...

Expand All @@ -445,24 +441,8 @@ def random_state(state: RandomState | None = None):
np.random.RandomState or np.random.Generator. If state is None, returns np.random

"""
if (
is_integer(state)
or is_array_like(state)
or isinstance(state, np.random.BitGenerator)
):
# error: Argument 1 to "RandomState" has incompatible type "Optional[Union[int,
# Union[ExtensionArray, ndarray[Any, Any]], Generator, RandomState]]"; expected
# "Union[None, Union[Union[_SupportsArray[dtype[Union[bool_, integer[Any]]]],
# Sequence[_SupportsArray[dtype[Union[bool_, integer[Any]]]]],
# Sequence[Sequence[_SupportsArray[dtype[Union[bool_, integer[Any]]]]]],
# Sequence[Sequence[Sequence[_SupportsArray[dtype[Union[bool_,
# integer[Any]]]]]]],
# Sequence[Sequence[Sequence[Sequence[_SupportsArray[dtype[Union[bool_,
# integer[Any]]]]]]]]], Union[bool, int, Sequence[Union[bool, int]],
# Sequence[Sequence[Union[bool, int]]], Sequence[Sequence[Sequence[Union[bool,
# int]]]], Sequence[Sequence[Sequence[Sequence[Union[bool, int]]]]]]],
# BitGenerator]"
return np.random.RandomState(state) # type: ignore[arg-type]
if is_integer(state) or isinstance(state, (np.ndarray, np.random.BitGenerator)):
return np.random.RandomState(state)
elif isinstance(state, np.random.RandomState):
return state
elif isinstance(state, np.random.Generator):
Expand Down