Skip to content

DOC: Set value for undefined variables in examples #51389

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 17 commits into from
Feb 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 14 additions & 8 deletions pandas/core/apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -1323,17 +1323,23 @@ def relabel_result(
columns: New columns name for relabelling
order: New order for relabelling

Examples:
---------
>>> result = DataFrame({"A": [np.nan, 2, np.nan],
... "C": [6, np.nan, np.nan], "B": [np.nan, 4, 2.5]}) # doctest: +SKIP
Examples
--------
>>> from pandas.core.apply import relabel_result
>>> result = pd.DataFrame(
... {"A": [np.nan, 2, np.nan], "C": [6, np.nan, np.nan], "B": [np.nan, 4, 2.5]},
... index=["max", "mean", "min"]
... )
>>> funcs = {"A": ["max"], "C": ["max"], "B": ["mean", "min"]}
>>> columns = ("foo", "aab", "bar", "dat")
>>> order = [0, 1, 2, 3]
>>> _relabel_result(result, func, columns, order) # doctest: +SKIP
dict(A=Series([2.0, NaN, NaN, NaN], index=["foo", "aab", "bar", "dat"]),
C=Series([NaN, 6.0, NaN, NaN], index=["foo", "aab", "bar", "dat"]),
B=Series([NaN, NaN, 2.5, 4.0], index=["foo", "aab", "bar", "dat"]))
>>> result_in_dict = relabel_result(result, funcs, columns, order)
>>> pd.DataFrame(result_in_dict, index=columns)
A C B
foo 2.0 NaN NaN
aab NaN 6.0 NaN
bar NaN NaN 4.0
dat NaN NaN 2.5
"""
from pandas.core.indexes.base import Index

Expand Down
5 changes: 3 additions & 2 deletions pandas/core/arrays/datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -258,8 +258,9 @@ def _unbox_scalar(

Examples
--------
>>> self._unbox_scalar(Timedelta("10s")) # doctest: +SKIP
10000000000
>>> arr = pd.arrays.DatetimeArray(np.array(['1970-01-01'], 'datetime64[ns]'))
>>> arr._unbox_scalar(arr[0])
numpy.datetime64('1970-01-01T00:00:00.000000000')
"""
raise AbstractMethodError(self)

Expand Down
1 change: 1 addition & 0 deletions pandas/core/dtypes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,6 +261,7 @@ def construct_from_string(
For extension dtypes with arguments the following may be an
adequate implementation.

>>> import re
>>> @classmethod
... def construct_from_string(cls, string):
... pattern = re.compile(r"^my_type\[(?P<arg_name>.+)\]$")
Expand Down
75 changes: 60 additions & 15 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -2204,7 +2204,7 @@ def to_excel(

>>> with pd.ExcelWriter('output.xlsx',
... mode='a') as writer: # doctest: +SKIP
... df.to_excel(writer, sheet_name='Sheet_name_3')
... df1.to_excel(writer, sheet_name='Sheet_name_3')

To set the library that is used to write the Excel file,
you can pass the `engine` keyword (the default engine is
Expand Down Expand Up @@ -5864,9 +5864,9 @@ def pipe(
Alternatively a ``(callable, data_keyword)`` tuple where
``data_keyword`` is a string indicating the keyword of
``callable`` that expects the {klass}.
args : iterable, optional
*args : iterable, optional
Positional arguments passed into ``func``.
kwargs : mapping, optional
**kwargs : mapping, optional
A dictionary of keyword arguments passed into ``func``.

Returns
Expand All @@ -5883,25 +5883,70 @@ def pipe(
Notes
-----
Use ``.pipe`` when chaining together functions that expect
Series, DataFrames or GroupBy objects. Instead of writing
Series, DataFrames or GroupBy objects.

>>> func(g(h(df), arg1=a), arg2=b, arg3=c) # doctest: +SKIP
Examples
--------
Constructing a income DataFrame from a dictionary.

>>> data = [[8000, 1000], [9500, np.nan], [5000, 2000]]
>>> df = pd.DataFrame(data, columns=['Salary', 'Others'])
>>> df
Salary Others
0 8000 1000.0
1 9500 NaN
2 5000 2000.0

Functions that perform tax reductions on an income DataFrame.

>>> def subtract_federal_tax(df):
... return df * 0.9
>>> def subtract_state_tax(df, rate):
... return df * (1 - rate)
>>> def subtract_national_insurance(df, rate, rate_increase):
... new_rate = rate + rate_increase
... return df * (1 - new_rate)

Instead of writing

>>> subtract_national_insurance(
... subtract_state_tax(subtract_federal_tax(df), rate=0.12),
... rate=0.05,
... rate_increase=0.02) # doctest: +SKIP

You can write

>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe(func, arg2=b, arg3=c)
... ) # doctest: +SKIP
>>> (
... df.pipe(subtract_federal_tax)
... .pipe(subtract_state_tax, rate=0.12)
... .pipe(subtract_national_insurance, rate=0.05, rate_increase=0.02)
... )
Salary Others
0 5892.48 736.56
1 6997.32 NaN
2 3682.80 1473.12

If you have a function that takes the data as (say) the second
argument, pass a tuple indicating which keyword expects the
data. For example, suppose ``func`` takes its data as ``arg2``:

>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe((func, 'arg2'), arg1=a, arg3=c)
... ) # doctest: +SKIP
data. For example, suppose ``national_insurance`` takes its data as ``df``
in the second argument:

>>> def subtract_national_insurance(rate, df, rate_increase):
... new_rate = rate + rate_increase
... return df * (1 - new_rate)
>>> (
... df.pipe(subtract_federal_tax)
... .pipe(subtract_state_tax, rate=0.12)
... .pipe(
... (subtract_national_insurance, 'df'),
... rate=0.05,
... rate_increase=0.02
... )
... )
Salary Others
0 5892.48 736.56
1 6997.32 NaN
2 3682.80 1473.12
"""
if using_copy_on_write():
return common.pipe(self.copy(deep=None), func, *args, **kwargs)
Expand Down
2 changes: 1 addition & 1 deletion pandas/io/formats/style_render.py
Original file line number Diff line number Diff line change
Expand Up @@ -1272,7 +1272,7 @@ def format_index(

>>> df = pd.DataFrame([[1, 2, 3]],
... columns=pd.MultiIndex.from_arrays([["a", "a", "b"],[2, np.nan, 4]]))
>>> df.style.format_index({0: lambda v: upper(v)}, axis=1, precision=1)
>>> df.style.format_index({0: lambda v: v.upper()}, axis=1, precision=1)
... # doctest: +SKIP
A B
2.0 nan 4.0
Expand Down