Skip to content

DEPR: dt64 any/all GH#34479 #50947

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Jan 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -638,6 +638,7 @@ Deprecations
- :meth:`Index.holds_integer` has been deprecated. Use :func:`pandas.api.types.infer_dtype` instead (:issue:`50243`)
- :meth:`Index.is_categorical` has been deprecated. Use :func:`pandas.api.types.is_categorical_dtype` instead (:issue:`50042`)
- :meth:`Index.is_interval` has been deprecated. Use :func:`pandas.api.types.is_intterval_dtype` instead (:issue:`50042`)
- Deprecated ``all`` and ``any`` reductions with ``datetime64`` and :class:`DatetimeTZDtype` dtypes, use e.g. ``(obj != pd.Timestamp(0), tz=obj.tz).all()`` instead (:issue:`34479`)
-

.. ---------------------------------------------------------------------------
Expand Down
5 changes: 3 additions & 2 deletions pandas/core/arrays/datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -2034,11 +2034,12 @@ def ceil(
# Reductions

def any(self, *, axis: AxisInt | None = None, skipna: bool = True) -> bool:
# GH#34479 discussion of desired behavior long-term
# GH#34479 the nanops call will issue a FutureWarning for non-td64 dtype
return nanops.nanany(self._ndarray, axis=axis, skipna=skipna, mask=self.isna())

def all(self, *, axis: AxisInt | None = None, skipna: bool = True) -> bool:
# GH#34479 discussion of desired behavior long-term
# GH#34479 the nanops call will issue a FutureWarning for non-td64 dtype

return nanops.nanall(self._ndarray, axis=axis, skipna=skipna, mask=self.isna())

# --------------------------------------------------------------
Expand Down
19 changes: 19 additions & 0 deletions pandas/core/nanops.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
npt,
)
from pandas.compat._optional import import_optional_dependency
from pandas.util._exceptions import find_stack_level

from pandas.core.dtypes.common import (
is_any_int_dtype,
Expand Down Expand Up @@ -529,6 +530,15 @@ def nanany(
>>> nanops.nanany(s)
False
"""
if needs_i8_conversion(values.dtype) and values.dtype.kind != "m":
# GH#34479
warnings.warn(
"'any' with datetime64 dtypes is deprecated and will raise in a "
"future version. Use (obj != pd.Timestamp(0)).any() instead.",
FutureWarning,
stacklevel=find_stack_level(),
)

values, _, _, _, _ = _get_values(values, skipna, fill_value=False, mask=mask)

# For object type, any won't necessarily return
Expand Down Expand Up @@ -575,6 +585,15 @@ def nanall(
>>> nanops.nanall(s)
False
"""
if needs_i8_conversion(values.dtype) and values.dtype.kind != "m":
# GH#34479
warnings.warn(
"'all' with datetime64 dtypes is deprecated and will raise in a "
"future version. Use (obj != pd.Timestamp(0)).all() instead.",
FutureWarning,
stacklevel=find_stack_level(),
)

values, _, _, _, _ = _get_values(values, skipna, fill_value=True, mask=mask)

# For object type, all won't necessarily return
Expand Down
19 changes: 17 additions & 2 deletions pandas/tests/frame/test_reductions.py
Original file line number Diff line number Diff line change
Expand Up @@ -1138,6 +1138,10 @@ def test_any_all_object_dtype(self, axis, bool_agg_func, skipna):
expected = Series([True, True, True, True])
tm.assert_series_equal(result, expected)

# GH#50947 deprecates this but it is not emitting a warning in some builds.
@pytest.mark.filterwarnings(
"ignore:'any' with datetime64 dtypes is deprecated.*:FutureWarning"
)
def test_any_datetime(self):

# GH 23070
Expand All @@ -1151,6 +1155,7 @@ def test_any_datetime(self):
df = DataFrame({"A": float_data, "B": datetime_data})

result = df.any(axis=1)

expected = Series([True, True, True, False])
tm.assert_series_equal(result, expected)

Expand Down Expand Up @@ -1245,12 +1250,22 @@ def test_any_all_np_func(self, func, data, expected):
):
getattr(DataFrame(data), func.__name__)(axis=None)
else:
result = func(data)
msg = "'(any|all)' with datetime64 dtypes is deprecated"
if data.dtypes.apply(lambda x: x.kind == "M").any():
warn = FutureWarning
else:
warn = None

with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False):
# GH#34479
result = func(data)
assert isinstance(result, np.bool_)
assert result.item() is expected

# method version
result = getattr(DataFrame(data), func.__name__)(axis=None)
with tm.assert_produces_warning(warn, match=msg):
# GH#34479
result = getattr(DataFrame(data), func.__name__)(axis=None)
assert isinstance(result, np.bool_)
assert result.item() is expected

Expand Down
29 changes: 17 additions & 12 deletions pandas/tests/reductions/test_reductions.py
Original file line number Diff line number Diff line change
Expand Up @@ -985,27 +985,32 @@ def test_any_all_datetimelike(self):
ser = Series(dta)
df = DataFrame(ser)

assert dta.all()
assert dta.any()
msg = "'(any|all)' with datetime64 dtypes is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
# GH#34479
assert dta.all()
assert dta.any()

assert ser.all()
assert ser.any()
assert ser.all()
assert ser.any()

assert df.any().all()
assert df.all().all()
assert df.any().all()
assert df.all().all()

dta = dta.tz_localize("UTC")
ser = Series(dta)
df = DataFrame(ser)

assert dta.all()
assert dta.any()
with tm.assert_produces_warning(FutureWarning, match=msg):
# GH#34479
assert dta.all()
assert dta.any()

assert ser.all()
assert ser.any()
assert ser.all()
assert ser.any()

assert df.any().all()
assert df.all().all()
assert df.any().all()
assert df.all().all()

tda = dta - dta[0]
ser = Series(tda)
Expand Down