Skip to content

BUG: MultiIndex.join losing dtype #49877

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
Nov 29, 2022
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -705,6 +705,7 @@ MultiIndex
- Bug in :meth:`MultiIndex.union` not sorting when sort=None and index contains missing values (:issue:`49010`)
- Bug in :meth:`MultiIndex.append` not checking names for equality (:issue:`48288`)
- Bug in :meth:`MultiIndex.symmetric_difference` losing extension array (:issue:`48607`)
- Bug in :meth:`MultiIndex.join` losing dtypes when :class:`MultiIndex` has duplicates (:issue:`49830`)
- Bug in :meth:`MultiIndex.putmask` losing extension array (:issue:`49830`)
- Bug in :meth:`MultiIndex.value_counts` returning a :class:`Series` indexed by flat index of tuples instead of a :class:`MultiIndex` (:issue:`49558`)
-
Expand Down
35 changes: 14 additions & 21 deletions pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -4572,22 +4572,9 @@ def _join_non_unique(
)
mask = left_idx == -1

join_array = self._values.take(left_idx)
right = other._values.take(right_idx)

if isinstance(join_array, np.ndarray):
# error: Argument 3 to "putmask" has incompatible type
# "Union[ExtensionArray, ndarray[Any, Any]]"; expected
# "Union[_SupportsArray[dtype[Any]], _NestedSequence[
# _SupportsArray[dtype[Any]]], bool, int, float, complex,
# str, bytes, _NestedSequence[Union[bool, int, float,
# complex, str, bytes]]]"
np.putmask(join_array, mask, right) # type: ignore[arg-type]
else:
join_array._putmask(mask, right)

join_index = self._wrap_joined_index(join_array, other)

join_idx = self.take(left_idx)
right = other.take(right_idx)
join_index = join_idx.putmask(mask, right)
return join_index, left_idx, right_idx

@final
Expand Down Expand Up @@ -4764,10 +4751,10 @@ def _join_monotonic(
ridx = None
elif how == "inner":
join_array, lidx, ridx = self._inner_indexer(other)
join_index = self._wrap_joined_index(join_array, other)
join_index = self._wrap_joined_index(join_array, other, lidx, ridx)
elif how == "outer":
join_array, lidx, ridx = self._outer_indexer(other)
join_index = self._wrap_joined_index(join_array, other)
join_index = self._wrap_joined_index(join_array, other, lidx, ridx)
else:
if how == "left":
join_array, lidx, ridx = self._left_indexer(other)
Expand All @@ -4778,20 +4765,26 @@ def _join_monotonic(
elif how == "outer":
join_array, lidx, ridx = self._outer_indexer(other)

join_index = self._wrap_joined_index(join_array, other)
join_index = self._wrap_joined_index(join_array, other, lidx, ridx)

lidx = None if lidx is None else ensure_platform_int(lidx)
ridx = None if ridx is None else ensure_platform_int(ridx)
return join_index, lidx, ridx

def _wrap_joined_index(self: _IndexT, joined: ArrayLike, other: _IndexT) -> _IndexT:
def _wrap_joined_index(
self: _IndexT, joined: ArrayLike, other: _IndexT, lidx, ridx
) -> _IndexT:
assert other.dtype == self.dtype

if isinstance(self, ABCMultiIndex):
name = self.names if self.names == other.names else None
# error: Incompatible return value type (got "MultiIndex",
# expected "_IndexT")
return self._constructor(joined, name=name) # type: ignore[return-value]
mask = lidx == -1
join_idx = self.take(lidx)
right = other.take(ridx)
join_index = join_idx.putmask(mask, right)
return join_index.set_names(name) # type: ignore[return-value]
else:
name = get_op_result_name(self, other)
return self._constructor._with_infer(joined, name=name, dtype=self.dtype)
Expand Down
4 changes: 2 additions & 2 deletions pandas/core/indexes/datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -625,9 +625,9 @@ def _get_join_freq(self, other):
freq = self.freq
return freq

def _wrap_joined_index(self, joined, other):
def _wrap_joined_index(self, joined, other, lidx, ridx):
assert other.dtype == self.dtype, (other.dtype, self.dtype)
result = super()._wrap_joined_index(joined, other)
result = super()._wrap_joined_index(joined, other, lidx, ridx)
result._data._freq = self._get_join_freq(other)
return result

Expand Down
14 changes: 14 additions & 0 deletions pandas/tests/frame/methods/test_combine_first.py
Original file line number Diff line number Diff line change
Expand Up @@ -543,3 +543,17 @@ def test_combine_first_int64_not_cast_to_float64():
result = df_1.combine_first(df_2)
expected = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [12, 34, 65]})
tm.assert_frame_equal(result, expected)


def test_midx_losing_dtype():
# GH#49830
midx = MultiIndex.from_arrays([[0, 0], [np.nan, np.nan]])
midx2 = MultiIndex.from_arrays([[1, 1], [np.nan, np.nan]])
df1 = DataFrame({"a": [None, 4]}, index=midx)
df2 = DataFrame({"a": [3, 3]}, index=midx2)
result = df1.combine_first(df2)
expected_midx = MultiIndex.from_arrays(
[[0, 0, 1, 1], [np.nan, np.nan, np.nan, np.nan]]
)
expected = DataFrame({"a": [np.nan, 4, 3, 3]}, index=expected_midx)
tm.assert_frame_equal(result, expected)
32 changes: 32 additions & 0 deletions pandas/tests/indexes/multi/test_join.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,3 +225,35 @@ def test_join_multi_with_nan():
index=MultiIndex.from_product([["A"], [1.0, 2.0]], names=["id1", "id2"]),
)
tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("val", [0, 5])
def test_join_dtypes(any_numeric_ea_dtype, val):
# GH#49830
midx = MultiIndex.from_arrays([Series([1, 2], dtype=any_numeric_ea_dtype), [3, 4]])
midx2 = MultiIndex.from_arrays(
[Series([1, val, val], dtype=any_numeric_ea_dtype), [3, 4, 4]]
)
result = midx.join(midx2, how="outer")
expected = MultiIndex.from_arrays(
[Series([val, val, 1, 2], dtype=any_numeric_ea_dtype), [4, 4, 3, 4]]
).sort_values()
tm.assert_index_equal(result, expected)


def test_join_dtypes_all_nan(any_numeric_ea_dtype):
# GH#49830
midx = MultiIndex.from_arrays(
[Series([1, 2], dtype=any_numeric_ea_dtype), [np.nan, np.nan]]
)
midx2 = MultiIndex.from_arrays(
[Series([1, 0, 0], dtype=any_numeric_ea_dtype), [np.nan, np.nan, np.nan]]
)
result = midx.join(midx2, how="outer")
expected = MultiIndex.from_arrays(
[
Series([0, 0, 1, 2], dtype=any_numeric_ea_dtype),
[np.nan, np.nan, np.nan, np.nan],
]
)
tm.assert_index_equal(result, expected)