Skip to content

DEPR: enforce Series constructor with int dtype deprs #49777

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 18, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions doc/source/whatsnew/v2.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -545,6 +545,8 @@ Removal of prior version deprecations/changes
- Changed behavior of setitem-like operations (``__setitem__``, ``fillna``, ``where``, ``mask``, ``replace``, ``insert``, fill_value for ``shift``) on an object with :class:`DatetimeTZDtype` when using a value with a non-matching timezone, the value will be cast to the object's timezone instead of casting both to object-dtype (:issue:`44243`)
- Changed behavior of :class:`Index`, :class:`Series`, :class:`DataFrame` constructors with floating-dtype data and a :class:`DatetimeTZDtype`, the data are now interpreted as UTC-times instead of wall-times, consistent with how integer-dtype data are treated (:issue:`45573`)
- Changed behavior of :class:`Series` and :class:`DataFrame` constructors with integer dtype and floating-point data containing ``NaN``, this now raises ``IntCastingNaNError`` (:issue:`40110`)
- Changed behavior of :class:`Series` and :class:`DataFrame` constructors with an integer ``dtype`` and values that are too large to losslessly cast to this dtype, this now raises ``ValueError`` (:issue:`41734`)
- Changed behavior of :class:`Series` and :class:`DataFrame` constructors with an integer ``dtype`` and values having either ``datetime64`` or ``timedelta64`` dtypes, this now raises ``TypeError``, use ``values.view("int64")`` instead (:issue:`41770`)
- Removed the deprecated ``base`` and ``loffset`` arguments from :meth:`pandas.DataFrame.resample`, :meth:`pandas.Series.resample` and :class:`pandas.Grouper`. Use ``offset`` or ``origin`` instead (:issue:`31809`)
- Changed behavior of :meth:`Series.fillna` and :meth:`DataFrame.fillna` with ``timedelta64[ns]`` dtype and an incompatible ``fill_value``; this now casts to ``object`` dtype instead of raising, consistent with the behavior with other dtypes (:issue:`45746`)
- Change the default argument of ``regex`` for :meth:`Series.str.replace` from ``True`` to ``False``. Additionally, a single character ``pat`` with ``regex=True`` is now treated as a regular expression instead of a string literal. (:issue:`36695`, :issue:`24804`)
Expand Down
21 changes: 6 additions & 15 deletions pandas/core/dtypes/cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,6 @@
IntCastingNaNError,
LossySetitemError,
)
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import validate_bool_kwarg

from pandas.core.dtypes.common import (
Expand Down Expand Up @@ -1680,25 +1679,17 @@ def maybe_cast_to_integer_array(

if casted.dtype < arr.dtype:
# GH#41734 e.g. [1, 200, 923442] and dtype="int8" -> overflows
warnings.warn(
f"Values are too large to be losslessly cast to {dtype}. "
"In a future version this will raise OverflowError. To retain the "
f"old behavior, use pd.Series(values).astype({dtype})",
FutureWarning,
stacklevel=find_stack_level(),
raise ValueError(
f"Values are too large to be losslessly converted to {dtype}. "
f"To cast anyway, use pd.Series(values).astype({dtype})"
)
return casted

if arr.dtype.kind in ["m", "M"]:
# test_constructor_maskedarray_nonfloat
warnings.warn(
f"Constructing Series or DataFrame from {arr.dtype} values and "
f"dtype={dtype} is deprecated and will raise in a future version. "
"Use values.view(dtype) instead.",
FutureWarning,
stacklevel=find_stack_level(),
raise TypeError(
f"Constructing a Series or DataFrame from {arr.dtype} values and "
f"dtype={dtype} is not supported. Use values.view({dtype}) instead."
)
return casted

# No known cases that get here, but raising explicitly to cover our bases.
raise ValueError(f"values cannot be losslessly cast to {dtype}")
Expand Down
9 changes: 3 additions & 6 deletions pandas/tests/frame/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -1059,18 +1059,15 @@ def test_constructor_maskedarray_nonfloat(self):
assert isna(frame).values.all()

# cast type
msg = r"datetime64\[ns\] values and dtype=int64"
with tm.assert_produces_warning(FutureWarning, match=msg):
msg = r"datetime64\[ns\] values and dtype=int64 is not supported"
with pytest.raises(TypeError, match=msg):
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
category=DeprecationWarning,
message="elementwise comparison failed",
)
frame = DataFrame(
mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64
)
assert frame.values.dtype == np.int64
DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64)

# Check non-masked values
mat2 = ma.copy(mat)
Expand Down
26 changes: 9 additions & 17 deletions pandas/tests/series/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -749,25 +749,17 @@ def test_constructor_cast(self):
with pytest.raises(ValueError, match=msg):
Series(["a", "b", "c"], dtype=float)

def test_constructor_signed_int_overflow_deprecation(self):
# GH#41734 disallow silent overflow
msg = "Values are too large to be losslessly cast"
def test_constructor_signed_int_overflow_raises(self):
# GH#41734 disallow silent overflow, enforced in 2.0
msg = "Values are too large to be losslessly converted"
numpy_warning = DeprecationWarning if is_numpy_dev else None
with tm.assert_produces_warning(
(FutureWarning, numpy_warning), match=msg, check_stacklevel=False
):
ser = Series([1, 200, 923442], dtype="int8")

expected = Series([1, -56, 50], dtype="int8")
tm.assert_series_equal(ser, expected)

with tm.assert_produces_warning(
(FutureWarning, numpy_warning), match=msg, check_stacklevel=False
):
ser = Series([1, 200, 923442], dtype="uint8")
with pytest.raises(ValueError, match=msg):
with tm.assert_produces_warning(numpy_warning):
Series([1, 200, 923442], dtype="int8")

expected = Series([1, 200, 50], dtype="uint8")
tm.assert_series_equal(ser, expected)
with pytest.raises(ValueError, match=msg):
with tm.assert_produces_warning(numpy_warning):
Series([1, 200, 923442], dtype="uint8")

@pytest.mark.parametrize(
"values",
Expand Down