Skip to content

REF: helpers to de-duplicate datetimelike arithmetic #48862

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Oct 3, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 35 additions & 47 deletions pandas/core/arrays/datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
Period,
Resolution,
Tick,
Timedelta,
Timestamp,
astype_overflowsafe,
delta_to_nanoseconds,
Expand Down Expand Up @@ -1122,7 +1123,7 @@ def _get_i8_values_and_mask(
if isinstance(other, Period):
i8values = other.ordinal
mask = None
elif isinstance(other, Timestamp):
elif isinstance(other, (Timestamp, Timedelta)):
i8values = other.value
mask = None
else:
Expand Down Expand Up @@ -1203,33 +1204,12 @@ def _sub_datetimelike_scalar(self, other: datetime | np.datetime64):
self = cast("DatetimeArray", self)
# subtract a datetime from myself, yielding a ndarray[timedelta64[ns]]

# error: Non-overlapping identity check (left operand type: "Union[datetime,
# datetime64]", right operand type: "NaTType") [comparison-overlap]
assert other is not NaT # type: ignore[comparison-overlap]
other = Timestamp(other)
# error: Non-overlapping identity check (left operand type: "Timestamp",
# right operand type: "NaTType")
if other is NaT: # type: ignore[comparison-overlap]
if isna(other):
# i.e. np.datetime64("NaT")
return self - NaT

try:
self._assert_tzawareness_compat(other)
except TypeError as err:
new_message = str(err).replace("compare", "subtract")
raise type(err)(new_message) from err

i8 = self.asi8
result = checked_add_with_arr(i8, -other.value, arr_mask=self._isnan)
res_m8 = result.view(f"timedelta64[{self._unit}]")

new_freq = None
if isinstance(self.freq, Tick):
# adding a scalar preserves freq
new_freq = self.freq

from pandas.core.arrays import TimedeltaArray

return TimedeltaArray._simple_new(res_m8, dtype=res_m8.dtype, freq=new_freq)
other = Timestamp(other)
return self._sub_datetimelike(other)

@final
def _sub_datetime_arraylike(self, other):
Expand All @@ -1241,19 +1221,28 @@ def _sub_datetime_arraylike(self, other):

self = cast("DatetimeArray", self)
other = ensure_wrapped_if_datetimelike(other)
return self._sub_datetimelike(other)

@final
def _sub_datetimelike(self, other: Timestamp | DatetimeArray) -> TimedeltaArray:
self = cast("DatetimeArray", self)

from pandas.core.arrays import TimedeltaArray

try:
self._assert_tzawareness_compat(other)
except TypeError as err:
new_message = str(err).replace("compare", "subtract")
raise type(err)(new_message) from err

self_i8 = self.asi8
other_i8 = other.asi8
new_values = checked_add_with_arr(
self_i8, -other_i8, arr_mask=self._isnan, b_mask=other._isnan
other_i8, o_mask = self._get_i8_values_and_mask(other)
res_values = checked_add_with_arr(
self.asi8, -other_i8, arr_mask=self._isnan, b_mask=o_mask
)
return new_values.view("timedelta64[ns]")
res_m8 = res_values.view(f"timedelta64[{self._unit}]")

new_freq = self._get_arithmetic_result_freq(other)
return TimedeltaArray._simple_new(res_m8, dtype=res_m8.dtype, freq=new_freq)

@final
def _sub_period(self, other: Period) -> npt.NDArray[np.object_]:
Expand Down Expand Up @@ -1289,24 +1278,15 @@ def _add_timedeltalike_scalar(self, other):
Same type as self
"""
if isna(other):
# i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds
# i.e np.timedelta64("NaT")
new_values = np.empty(self.shape, dtype="i8").view(self._ndarray.dtype)
new_values.fill(iNaT)
return type(self)._simple_new(new_values, dtype=self.dtype)

# PeriodArray overrides, so we only get here with DTA/TDA
self = cast("DatetimeArray | TimedeltaArray", self)
inc = delta_to_nanoseconds(other, reso=self._reso)

new_values = checked_add_with_arr(self.asi8, inc, arr_mask=self._isnan)
new_values = new_values.view(self._ndarray.dtype)

new_freq = None
if isinstance(self.freq, Tick) or is_period_dtype(self.dtype):
# adding a scalar preserves freq
new_freq = self.freq

return type(self)._simple_new(new_values, dtype=self.dtype, freq=new_freq)
other = Timedelta(other)._as_unit(self._unit)
return self._add_timedeltalike(other)

def _add_timedelta_arraylike(
self, other: TimedeltaArray | npt.NDArray[np.timedelta64]
Expand Down Expand Up @@ -1334,13 +1314,21 @@ def _add_timedelta_arraylike(
else:
other = other._as_unit(self._unit)

self_i8 = self.asi8
other_i8 = other.asi8
return self._add_timedeltalike(other)

@final
def _add_timedeltalike(self, other: Timedelta | TimedeltaArray):
self = cast("DatetimeArray | TimedeltaArray", self)

other_i8, o_mask = self._get_i8_values_and_mask(other)
new_values = checked_add_with_arr(
self_i8, other_i8, arr_mask=self._isnan, b_mask=other._isnan
self.asi8, other_i8, arr_mask=self._isnan, b_mask=o_mask
)
res_values = new_values.view(self._ndarray.dtype)
return type(self)._simple_new(res_values, dtype=self.dtype)

new_freq = self._get_arithmetic_result_freq(other)

return type(self)._simple_new(res_values, dtype=self.dtype, freq=new_freq)

@final
def _add_nat(self):
Expand Down