Skip to content

TST: Filter/catch pyarrow PerformanceWarnings #48208

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Aug 26, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 61 additions & 6 deletions pandas/tests/extension/test_arrow.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,9 +25,11 @@
pa_version_under3p0,
pa_version_under4p0,
pa_version_under6p0,
pa_version_under7p0,
pa_version_under8p0,
pa_version_under9p0,
)
from pandas.errors import PerformanceWarning

import pandas as pd
import pandas._testing as tm
Expand Down Expand Up @@ -446,7 +448,10 @@ def test_groupby_extension_transform(self, data_for_grouping, request):
reason=f"pyarrow doesn't support factorizing {pa_dtype}",
)
)
super().test_groupby_extension_transform(data_for_grouping)
with tm.maybe_produces_warning(
PerformanceWarning, pa_version_under7p0, check_stacklevel=False
):
super().test_groupby_extension_transform(data_for_grouping)

def test_groupby_extension_apply(
self, data_for_grouping, groupby_apply_op, request
Expand Down Expand Up @@ -479,7 +484,10 @@ def test_groupby_extension_apply(
reason="GH 34986",
)
)
super().test_groupby_extension_apply(data_for_grouping, groupby_apply_op)
with tm.maybe_produces_warning(
PerformanceWarning, pa_version_under7p0, check_stacklevel=False
):
super().test_groupby_extension_apply(data_for_grouping, groupby_apply_op)

def test_in_numeric_groupby(self, data_for_grouping, request):
pa_dtype = data_for_grouping.dtype.pyarrow_dtype
Expand Down Expand Up @@ -518,7 +526,10 @@ def test_groupby_extension_agg(self, as_index, data_for_grouping, request):
reason="GH 34986",
)
)
super().test_groupby_extension_agg(as_index, data_for_grouping)
with tm.maybe_produces_warning(
PerformanceWarning, pa_version_under7p0, check_stacklevel=False
):
super().test_groupby_extension_agg(as_index, data_for_grouping)


class TestBaseDtype(base.BaseDtypeTests):
Expand Down Expand Up @@ -607,6 +618,10 @@ def test_view(self, data):


class TestBaseMissing(base.BaseMissingTests):
@pytest.mark.filterwarnings("ignore:Falling back:pandas.errors.PerformanceWarning")
def test_dropna_array(self, data_missing):
super().test_dropna_array(data_missing)

def test_fillna_limit_pad(self, data_missing, using_array_manager, request):
if using_array_manager and pa.types.is_duration(
data_missing.dtype.pyarrow_dtype
Expand Down Expand Up @@ -1331,6 +1346,12 @@ def test_invert(self, data, request):


class TestBaseMethods(base.BaseMethodsTests):
def test_argsort_missing_array(self, data_missing_for_sorting):
with tm.maybe_produces_warning(
PerformanceWarning, pa_version_under7p0, check_stacklevel=False
):
super().test_argsort_missing_array(data_missing_for_sorting)

@pytest.mark.parametrize("periods", [1, -2])
def test_diff(self, data, periods, request):
pa_dtype = data.dtype.pyarrow_dtype
Expand All @@ -1345,6 +1366,7 @@ def test_diff(self, data, periods, request):
)
super().test_diff(data, periods)

@pytest.mark.filterwarnings("ignore:Falling back:pandas.errors.PerformanceWarning")
@pytest.mark.parametrize("dropna", [True, False])
def test_value_counts(self, all_data, dropna, request):
pa_dtype = all_data.dtype.pyarrow_dtype
Expand Down Expand Up @@ -1384,7 +1406,10 @@ def test_value_counts_with_normalize(self, data, request):
reason=f"value_count has no pyarrow kernel for {pa_dtype}",
)
)
super().test_value_counts_with_normalize(data)
with tm.maybe_produces_warning(
PerformanceWarning, pa_version_under7p0, check_stacklevel=False
):
super().test_value_counts_with_normalize(data)

@pytest.mark.xfail(
pa_version_under6p0,
Expand Down Expand Up @@ -1445,6 +1470,19 @@ def test_argreduce_series(
data_missing_for_sorting, op_name, skipna, expected
)

@pytest.mark.parametrize(
"na_position, expected",
[
("last", np.array([2, 0, 1], dtype=np.dtype("intp"))),
("first", np.array([1, 2, 0], dtype=np.dtype("intp"))),
],
)
def test_nargsort(self, data_missing_for_sorting, na_position, expected):
with tm.maybe_produces_warning(
PerformanceWarning, pa_version_under7p0, check_stacklevel=False
):
super().test_nargsort(data_missing_for_sorting, na_position, expected)

@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values(self, data_for_sorting, ascending, sort_by_key, request):
pa_dtype = data_for_sorting.dtype.pyarrow_dtype
Expand All @@ -1458,7 +1496,21 @@ def test_sort_values(self, data_for_sorting, ascending, sort_by_key, request):
),
)
)
super().test_sort_values(data_for_sorting, ascending, sort_by_key)
with tm.maybe_produces_warning(
PerformanceWarning, pa_version_under7p0, check_stacklevel=False
):
super().test_sort_values(data_for_sorting, ascending, sort_by_key)

@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values_missing(
self, data_missing_for_sorting, ascending, sort_by_key
):
with tm.maybe_produces_warning(
PerformanceWarning, pa_version_under7p0, check_stacklevel=False
):
super().test_sort_values_missing(
data_missing_for_sorting, ascending, sort_by_key
)

@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values_frame(self, data_for_sorting, ascending, request):
Expand All @@ -1473,7 +1525,10 @@ def test_sort_values_frame(self, data_for_sorting, ascending, request):
),
)
)
super().test_sort_values_frame(data_for_sorting, ascending)
with tm.maybe_produces_warning(
PerformanceWarning, pa_version_under7p0, check_stacklevel=False
):
super().test_sort_values_frame(data_for_sorting, ascending)

@pytest.mark.parametrize("box", [pd.Series, lambda x: x])
@pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique])
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/indexes/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -285,7 +285,7 @@ def test_memory_usage(self, index):
if index.inferred_type == "object":
assert result3 > result2

def test_argsort(self, request, index):
def test_argsort(self, index):
# separately tested
if isinstance(index, CategoricalIndex):
return
Expand Down
26 changes: 24 additions & 2 deletions pandas/tests/indexes/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,14 @@
import numpy as np
import pytest

from pandas.compat import IS64
from pandas.errors import InvalidIndexError
from pandas.compat import (
IS64,
pa_version_under7p0,
)
from pandas.errors import (
InvalidIndexError,
PerformanceWarning,
)
from pandas.util._test_decorators import async_mark

import pandas as pd
Expand Down Expand Up @@ -62,6 +68,22 @@ def test_new_axis(self, index):
assert new_index.ndim == 2
assert isinstance(new_index, np.ndarray)

def test_argsort(self, index):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(index.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
super().test_argsort(index)

def test_numpy_argsort(self, index):
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(index.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
super().test_numpy_argsort(index)

def test_constructor_regular(self, index):
tm.assert_contains_all(index, index)

Expand Down
27 changes: 22 additions & 5 deletions pandas/tests/indexes/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
IS64,
pa_version_under7p0,
)
from pandas.errors import PerformanceWarning

from pandas.core.dtypes.common import is_integer_dtype

Expand Down Expand Up @@ -169,7 +170,12 @@ def test_copy_name(self, index_flat):
s1 = pd.Series(2, index=first)
s2 = pd.Series(3, index=second[:-1])
# See GH#13365
s3 = s1 * s2
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(index.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
s3 = s1 * s2
assert s3.index.name == "mario"

def test_copy_name2(self, index_flat):
Expand Down Expand Up @@ -460,9 +466,14 @@ def test_hasnans_isnans(self, index_flat):

@pytest.mark.parametrize("na_position", [None, "middle"])
def test_sort_values_invalid_na_position(index_with_missing, na_position):

with pytest.raises(ValueError, match=f"invalid na_position: {na_position}"):
index_with_missing.sort_values(na_position=na_position)
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(index_with_missing.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
with pytest.raises(ValueError, match=f"invalid na_position: {na_position}"):
index_with_missing.sort_values(na_position=na_position)


@pytest.mark.parametrize("na_position", ["first", "last"])
Expand All @@ -488,7 +499,13 @@ def test_sort_values_with_missing(index_with_missing, na_position, request):
# Explicitly pass dtype needed for Index backed by EA e.g. IntegerArray
expected = type(index_with_missing)(sorted_values, dtype=index_with_missing.dtype)

result = index_with_missing.sort_values(na_position=na_position)
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0
and getattr(index_with_missing.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
result = index_with_missing.sort_values(na_position=na_position)
tm.assert_index_equal(result, expected)


Expand Down
69 changes: 61 additions & 8 deletions pandas/tests/indexes/test_setops.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import pytest

from pandas.compat import pa_version_under7p0
from pandas.errors import PerformanceWarning

from pandas.core.dtypes.cast import find_common_type

Expand Down Expand Up @@ -38,8 +39,18 @@
def test_union_same_types(index):
# Union with a non-unique, non-monotonic index raises error
# Only needed for bool index factory
idx1 = index.sort_values()
idx2 = index.sort_values()
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(index.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
idx1 = index.sort_values()
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(index.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
idx2 = index.sort_values()
assert idx1.union(idx2).dtype == idx1.dtype


Expand Down Expand Up @@ -98,8 +109,18 @@ def test_union_different_types(index_flat, index_flat2, request):

# Union with a non-unique, non-monotonic index raises error
# This applies to the boolean index
idx1 = idx1.sort_values()
idx2 = idx2.sort_values()
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(idx1.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
idx1 = idx1.sort_values()
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(idx2.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
idx2 = idx2.sort_values()

with tm.assert_produces_warning(warn, match="'<' not supported between"):
res1 = idx1.union(idx2)
Expand Down Expand Up @@ -231,6 +252,9 @@ def test_intersection_base(self, index):
with pytest.raises(TypeError, match=msg):
first.intersection([1, 2, 3])

@pytest.mark.filterwarnings(
"ignore:Falling back on a non-pyarrow:pandas.errors.PerformanceWarning"
)
def test_union_base(self, index):
first = index[3:]
second = index[:5]
Expand All @@ -255,6 +279,9 @@ def test_union_base(self, index):
with pytest.raises(TypeError, match=msg):
first.union([1, 2, 3])

@pytest.mark.filterwarnings(
"ignore:Falling back on a non-pyarrow:pandas.errors.PerformanceWarning"
)
def test_difference_base(self, sort, index):
first = index[2:]
second = index[:4]
Expand All @@ -280,6 +307,9 @@ def test_difference_base(self, sort, index):
with pytest.raises(TypeError, match=msg):
first.difference([1, 2, 3], sort)

@pytest.mark.filterwarnings(
"ignore:Falling back on a non-pyarrow:pandas.errors.PerformanceWarning"
)
def test_symmetric_difference(self, index):
if isinstance(index, CategoricalIndex):
return
Expand Down Expand Up @@ -371,8 +401,18 @@ def test_union_unequal(self, index_flat, fname, sname, expected_name):
# test copy.union(subset) - need sort for unicode and string
first = index.copy().set_names(fname)
second = index[1:].set_names(sname)
union = first.union(second).sort_values()
expected = index.set_names(expected_name).sort_values()
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(index.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
union = first.union(second).sort_values()
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(index.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
expected = index.set_names(expected_name).sort_values()
tm.assert_index_equal(union, expected)

@pytest.mark.parametrize(
Expand Down Expand Up @@ -438,8 +478,18 @@ def test_intersect_unequal(self, index_flat, fname, sname, expected_name):
# test copy.intersection(subset) - need sort for unicode and string
first = index.copy().set_names(fname)
second = index[1:].set_names(sname)
intersect = first.intersection(second).sort_values()
expected = index[1:].set_names(expected_name).sort_values()
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(index.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
intersect = first.intersection(second).sort_values()
with tm.maybe_produces_warning(
PerformanceWarning,
pa_version_under7p0 and getattr(index.dtype, "storage", "") == "pyarrow",
check_stacklevel=False,
):
expected = index[1:].set_names(expected_name).sort_values()
tm.assert_index_equal(intersect, expected)

def test_intersection_name_retention_with_nameless(self, index):
Expand Down Expand Up @@ -495,6 +545,9 @@ def test_intersection_difference_match_empty(self, index, sort):
tm.assert_index_equal(inter, diff, exact=True)


@pytest.mark.filterwarnings(
"ignore:Falling back on a non-pyarrow:pandas.errors.PerformanceWarning"
)
@pytest.mark.parametrize(
"method", ["intersection", "union", "difference", "symmetric_difference"]
)
Expand Down