Skip to content

BUG: Series.setitem losing precision when enlarging #47342

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jul 1, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.5.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -823,6 +823,7 @@ Indexing
- Bug in :meth:`Series.__setitem__` where setting :attr:`NA` into a numeric-dtpye :class:`Series` would incorrectly upcast to object-dtype rather than treating the value as ``np.nan`` (:issue:`44199`)
- Bug in :meth:`Series.__setitem__` with ``datetime64[ns]`` dtype, an all-``False`` boolean mask, and an incompatible value incorrectly casting to ``object`` instead of retaining ``datetime64[ns]`` dtype (:issue:`45967`)
- Bug in :meth:`Index.__getitem__` raising ``ValueError`` when indexer is from boolean dtype with ``NA`` (:issue:`45806`)
- Bug in :meth:`Series.__setitem__` losing precision when enlarging :class:`Series` with scalar (:issue:`32346`)
- Bug in :meth:`Series.mask` with ``inplace=True`` or setting values with a boolean mask with small integer dtypes incorrectly raising (:issue:`45750`)
- Bug in :meth:`DataFrame.mask` with ``inplace=True`` and ``ExtensionDtype`` columns incorrectly raising (:issue:`45577`)
- Bug in getting a column from a DataFrame with an object-dtype row index with datetime-like values: the resulting Series now preserves the exact object-dtype Index from the parent DataFrame (:issue:`42950`)
Expand Down
26 changes: 23 additions & 3 deletions pandas/core/indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,10 @@
from pandas.util._decorators import doc
from pandas.util._exceptions import find_stack_level

from pandas.core.dtypes.cast import can_hold_element
from pandas.core.dtypes.cast import (
can_hold_element,
maybe_promote,
)
from pandas.core.dtypes.common import (
is_array_like,
is_bool_dtype,
Expand All @@ -41,7 +44,9 @@
)
from pandas.core.dtypes.missing import (
infer_fill_value,
is_valid_na_for_dtype,
isna,
na_value_for_dtype,
)

from pandas.core import algorithms as algos
Expand Down Expand Up @@ -2083,8 +2088,23 @@ def _setitem_with_indexer_missing(self, indexer, value):
# We get only here with loc, so can hard code
return self._setitem_with_indexer(new_indexer, value, "loc")

# this preserves dtype of the value
new_values = Series([value])._values
# this preserves dtype of the value and of the object
if is_valid_na_for_dtype(value, self.obj.dtype):
value = na_value_for_dtype(self.obj.dtype, compat=False)
new_dtype = maybe_promote(self.obj.dtype, value)[0]
elif isna(value):
new_dtype = None
elif not self.obj.empty and not is_object_dtype(self.obj.dtype):
# We should not cast, if we have object dtype because we can
# set timedeltas into object series
curr_dtype = self.obj.dtype
curr_dtype = getattr(curr_dtype, "numpy_dtype", curr_dtype)
new_dtype = maybe_promote(curr_dtype, value)[0]
else:
new_dtype = None

new_values = Series([value], dtype=new_dtype)._values

if len(self.obj._values):
# GH#22717 handle casting compatibility that np.concatenate
# does incorrectly
Expand Down
27 changes: 27 additions & 0 deletions pandas/tests/series/indexing/test_setitem.py
Original file line number Diff line number Diff line change
Expand Up @@ -534,6 +534,33 @@ def test_setitem_not_contained(self, string_series):
expected = concat([string_series, app])
tm.assert_series_equal(ser, expected)

def test_setitem_keep_precision(self, any_numeric_ea_dtype):
# GH#32346
ser = Series([1, 2], dtype=any_numeric_ea_dtype)
ser[2] = 10
expected = Series([1, 2, 10], dtype=any_numeric_ea_dtype)
tm.assert_series_equal(ser, expected)

@pytest.mark.parametrize("indexer", [1, 2])
@pytest.mark.parametrize(
"na, target_na, dtype, target_dtype",
[
(NA, NA, "Int64", "Int64"),
(NA, np.nan, "int64", "float64"),
(NaT, NaT, "int64", "object"),
(np.nan, NA, "Int64", "Int64"),
(np.nan, NA, "Float64", "Float64"),
(np.nan, np.nan, "int64", "float64"),
],
)
def test_setitem_enlarge_with_na(self, na, target_na, dtype, target_dtype, indexer):
# GH#32346
ser = Series([1, 2], dtype=dtype)
ser[indexer] = na
expected_values = [1, target_na] if indexer == 1 else [1, 2, target_na]
expected = Series(expected_values, dtype=target_dtype)
tm.assert_series_equal(ser, expected)


def test_setitem_scalar_into_readonly_backing_data():
# GH#14359: test that you cannot mutate a read only buffer
Expand Down