Skip to content

ENH: Add numeric_only to window ops #47265

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jun 8, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions doc/source/whatsnew/v1.5.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -654,6 +654,9 @@ gained the ``numeric_only`` argument.
- :meth:`.Resampler.sem`
- :meth:`.Resampler.std`
- :meth:`.Resampler.var`
- :meth:`DataFrame.rolling` operations
- :meth:`DataFrame.expanding` operations
- :meth:`DataFrame.ewm` operations

.. _whatsnew_150.deprecations.other:

Expand Down
9 changes: 9 additions & 0 deletions pandas/core/window/doc.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,15 @@ def create_section_header(header: str) -> str:
"""
).replace("\n", "", 1)

kwargs_numeric_only = dedent(
"""
numeric_only : bool, default False
Include only float, int, boolean columns.
.. versionadded:: 1.5.0\n
"""
).replace("\n", "", 1)

args_compat = dedent(
"""
*args
Expand Down
71 changes: 58 additions & 13 deletions pandas/core/window/ewm.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,10 @@
from pandas.util._decorators import doc
from pandas.util._exceptions import find_stack_level

from pandas.core.dtypes.common import is_datetime64_ns_dtype
from pandas.core.dtypes.common import (
is_datetime64_ns_dtype,
is_numeric_dtype,
)
from pandas.core.dtypes.missing import isna

import pandas.core.common as common # noqa: PDF018
Expand All @@ -45,6 +48,7 @@
args_compat,
create_section_header,
kwargs_compat,
kwargs_numeric_only,
numba_notes,
template_header,
template_returns,
Expand Down Expand Up @@ -518,6 +522,7 @@ def aggregate(self, func, *args, **kwargs):
@doc(
template_header,
create_section_header("Parameters"),
kwargs_numeric_only,
args_compat,
window_agg_numba_parameters(),
kwargs_compat,
Expand All @@ -531,7 +536,14 @@ def aggregate(self, func, *args, **kwargs):
aggregation_description="(exponential weighted moment) mean",
agg_method="mean",
)
def mean(self, *args, engine=None, engine_kwargs=None, **kwargs):
def mean(
self,
numeric_only: bool = False,
*args,
engine=None,
engine_kwargs=None,
**kwargs,
):
if maybe_use_numba(engine):
if self.method == "single":
func = generate_numba_ewm_func
Expand All @@ -545,7 +557,7 @@ def mean(self, *args, engine=None, engine_kwargs=None, **kwargs):
deltas=tuple(self._deltas),
normalize=True,
)
return self._apply(ewm_func)
return self._apply(ewm_func, name="mean")
elif engine in ("cython", None):
if engine_kwargs is not None:
raise ValueError("cython engine does not accept engine_kwargs")
Expand All @@ -560,13 +572,14 @@ def mean(self, *args, engine=None, engine_kwargs=None, **kwargs):
deltas=deltas,
normalize=True,
)
return self._apply(window_func)
return self._apply(window_func, name="mean", numeric_only=numeric_only)
else:
raise ValueError("engine must be either 'numba' or 'cython'")

@doc(
template_header,
create_section_header("Parameters"),
kwargs_numeric_only,
args_compat,
window_agg_numba_parameters(),
kwargs_compat,
Expand All @@ -580,7 +593,14 @@ def mean(self, *args, engine=None, engine_kwargs=None, **kwargs):
aggregation_description="(exponential weighted moment) sum",
agg_method="sum",
)
def sum(self, *args, engine=None, engine_kwargs=None, **kwargs):
def sum(
self,
numeric_only: bool = False,
*args,
engine=None,
engine_kwargs=None,
**kwargs,
):
if not self.adjust:
raise NotImplementedError("sum is not implemented with adjust=False")
if maybe_use_numba(engine):
Expand All @@ -596,7 +616,7 @@ def sum(self, *args, engine=None, engine_kwargs=None, **kwargs):
deltas=tuple(self._deltas),
normalize=False,
)
return self._apply(ewm_func)
return self._apply(ewm_func, name="sum")
elif engine in ("cython", None):
if engine_kwargs is not None:
raise ValueError("cython engine does not accept engine_kwargs")
Expand All @@ -611,7 +631,7 @@ def sum(self, *args, engine=None, engine_kwargs=None, **kwargs):
deltas=deltas,
normalize=False,
)
return self._apply(window_func)
return self._apply(window_func, name="sum", numeric_only=numeric_only)
else:
raise ValueError("engine must be either 'numba' or 'cython'")

Expand All @@ -624,6 +644,7 @@ def sum(self, *args, engine=None, engine_kwargs=None, **kwargs):
Use a standard estimation bias correction.
"""
).replace("\n", "", 1),
kwargs_numeric_only,
args_compat,
kwargs_compat,
create_section_header("Returns"),
Expand All @@ -634,9 +655,18 @@ def sum(self, *args, engine=None, engine_kwargs=None, **kwargs):
aggregation_description="(exponential weighted moment) standard deviation",
agg_method="std",
)
def std(self, bias: bool = False, *args, **kwargs):
def std(self, bias: bool = False, numeric_only: bool = False, *args, **kwargs):
nv.validate_window_func("std", args, kwargs)
return zsqrt(self.var(bias=bias, **kwargs))
if (
numeric_only
and self._selected_obj.ndim == 1
and not is_numeric_dtype(self._selected_obj.dtype)
):
# Raise directly so error message says std instead of var
raise NotImplementedError(
f"{type(self).__name__}.std does not implement numeric_only"
)
return zsqrt(self.var(bias=bias, numeric_only=numeric_only, **kwargs))

def vol(self, bias: bool = False, *args, **kwargs):
warnings.warn(
Expand All @@ -658,6 +688,7 @@ def vol(self, bias: bool = False, *args, **kwargs):
Use a standard estimation bias correction.
"""
).replace("\n", "", 1),
kwargs_numeric_only,
args_compat,
kwargs_compat,
create_section_header("Returns"),
Expand All @@ -668,7 +699,7 @@ def vol(self, bias: bool = False, *args, **kwargs):
aggregation_description="(exponential weighted moment) variance",
agg_method="var",
)
def var(self, bias: bool = False, *args, **kwargs):
def var(self, bias: bool = False, numeric_only: bool = False, *args, **kwargs):
nv.validate_window_func("var", args, kwargs)
window_func = window_aggregations.ewmcov
wfunc = partial(
Expand All @@ -682,7 +713,7 @@ def var(self, bias: bool = False, *args, **kwargs):
def var_func(values, begin, end, min_periods):
return wfunc(values, begin, end, min_periods, values)

return self._apply(var_func)
return self._apply(var_func, name="var", numeric_only=numeric_only)

@doc(
template_header,
Expand All @@ -703,6 +734,7 @@ def var_func(values, begin, end, min_periods):
Use a standard estimation bias correction.
"""
).replace("\n", "", 1),
kwargs_numeric_only,
kwargs_compat,
create_section_header("Returns"),
template_returns,
Expand All @@ -717,10 +749,13 @@ def cov(
other: DataFrame | Series | None = None,
pairwise: bool | None = None,
bias: bool = False,
numeric_only: bool = False,
**kwargs,
):
from pandas import Series

self._validate_numeric_only("cov", numeric_only)

def cov_func(x, y):
x_array = self._prep_values(x)
y_array = self._prep_values(y)
Expand Down Expand Up @@ -752,7 +787,9 @@ def cov_func(x, y):
)
return Series(result, index=x.index, name=x.name)

return self._apply_pairwise(self._selected_obj, other, pairwise, cov_func)
return self._apply_pairwise(
self._selected_obj, other, pairwise, cov_func, numeric_only
)

@doc(
template_header,
Expand All @@ -771,6 +808,7 @@ def cov_func(x, y):
observations will be used.
"""
).replace("\n", "", 1),
kwargs_numeric_only,
kwargs_compat,
create_section_header("Returns"),
template_returns,
Expand All @@ -784,10 +822,13 @@ def corr(
self,
other: DataFrame | Series | None = None,
pairwise: bool | None = None,
numeric_only: bool = False,
**kwargs,
):
from pandas import Series

self._validate_numeric_only("corr", numeric_only)

def cov_func(x, y):
x_array = self._prep_values(x)
y_array = self._prep_values(y)
Expand Down Expand Up @@ -825,7 +866,9 @@ def _cov(X, Y):
result = cov / zsqrt(x_var * y_var)
return Series(result, index=x.index, name=x.name)

return self._apply_pairwise(self._selected_obj, other, pairwise, cov_func)
return self._apply_pairwise(
self._selected_obj, other, pairwise, cov_func, numeric_only
)


class ExponentialMovingWindowGroupby(BaseWindowGroupby, ExponentialMovingWindow):
Expand Down Expand Up @@ -921,6 +964,7 @@ def corr(
self,
other: DataFrame | Series | None = None,
pairwise: bool | None = None,
numeric_only: bool = False,
**kwargs,
):
return NotImplementedError
Expand All @@ -930,6 +974,7 @@ def cov(
other: DataFrame | Series | None = None,
pairwise: bool | None = None,
bias: bool = False,
numeric_only: bool = False,
**kwargs,
):
return NotImplementedError
Expand Down
Loading