Skip to content

Test Case: pd.DataFrame.prob with min_count changes dtype if result contains NaNs #47170

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
May 30, 2022
19 changes: 18 additions & 1 deletion pandas/tests/frame/test_reductions.py
Original file line number Diff line number Diff line change
Expand Up @@ -789,12 +789,29 @@ def test_sum_nanops_min_count(self):
)
def test_sum_nanops_dtype_min_count(self, float_type, kwargs, expected_result):
# GH#46947
# pass
df = DataFrame({"a": [1.0, 2.3, 4.4], "b": [2.2, 3, np.nan]}, dtype=float_type)
result = df.sum(**kwargs)
expected = Series(expected_result).astype(float_type)
tm.assert_series_equal(result, expected)

@pytest.mark.parametrize("float_type", ["float16", "float32", "float64"])
@pytest.mark.parametrize(
"kwargs, expected_result",
[
({"axis": 1, "min_count": 2}, [2.0, 4.0, np.NaN]),
({"axis": 1, "min_count": 3}, [np.NaN, np.NaN, np.NaN]),
({"axis": 1, "skipna": False}, [2.0, 4.0, np.NaN]),
],
)
def test_prod_nanops_dtype_min_count(self, float_type, kwargs, expected_result):
# GH#46947
df = DataFrame(
{"a": [1.0, 2.0, 4.4], "b": [2.0, 2.0, np.nan]}, dtype=float_type
)
result = df.prod(**kwargs)
expected = Series(expected_result).astype(float_type)
tm.assert_series_equal(result, expected)

def test_sum_object(self, float_frame):
values = float_frame.values.astype(int)
frame = DataFrame(values, index=float_frame.index, columns=float_frame.columns)
Expand Down