Skip to content

REF/TST: misplaced hashtable tests, rename HashTable.map map_keys_to_values #46106

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 26, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 7 additions & 8 deletions pandas/_libs/hashtable.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -120,12 +120,6 @@ class HashTable:
# TODO: `item` type is subclass-specific
def get_item(self, item): ... # TODO: return type?
def set_item(self, item) -> None: ...
# FIXME: we don't actually have this for StringHashTable or ObjectHashTable?
def map(
self,
keys: np.ndarray, # np.ndarray[subclass-specific]
values: np.ndarray, # const int64_t[:]
) -> None: ...
def map_locations(
self,
values: np.ndarray, # np.ndarray[subclass-specific]
Expand Down Expand Up @@ -177,11 +171,16 @@ class Float64HashTable(HashTable): ...
class Float32HashTable(HashTable): ...

class Int64HashTable(HashTable):
# Only Int64HashTable has get_labels_groupby
# Only Int64HashTable has get_labels_groupby, map_keys_to_values
def get_labels_groupby(
self,
values: np.ndarray, # const int64_t[:]
values: npt.NDArray[np.int64], # const int64_t[:]
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64],]: ...
def map_keys_to_values(
self,
keys: npt.NDArray[np.int64],
values: npt.NDArray[np.int64], # const int64_t[:]
) -> None: ...

class Int32HashTable(HashTable): ...
class Int16HashTable(HashTable): ...
Expand Down
12 changes: 11 additions & 1 deletion pandas/_libs/hashtable_class_helper.pxi.in
Original file line number Diff line number Diff line change
Expand Up @@ -435,6 +435,7 @@ cdef class {{name}}HashTable(HashTable):
}

cpdef get_item(self, {{dtype}}_t val):
# Used in core.sorting, IndexEngine.get_loc
cdef:
khiter_t k
{{c_type}} cval
Expand All @@ -446,6 +447,7 @@ cdef class {{name}}HashTable(HashTable):
raise KeyError(val)

cpdef set_item(self, {{dtype}}_t key, Py_ssize_t val):
# Used in libjoin
cdef:
khiter_t k
int ret = 0
Expand All @@ -457,8 +459,13 @@ cdef class {{name}}HashTable(HashTable):
else:
raise KeyError(key)

{{if dtype == "int64" }}
# We only use this for int64, can reduce build size and make .pyi
# more accurate by only implementing it for int64
@cython.boundscheck(False)
def map(self, const {{dtype}}_t[:] keys, const int64_t[:] values) -> None:
def map_keys_to_values(
self, const {{dtype}}_t[:] keys, const int64_t[:] values
) -> None:
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
Expand All @@ -470,9 +477,11 @@ cdef class {{name}}HashTable(HashTable):
key = {{to_c_type}}(keys[i])
k = kh_put_{{dtype}}(self.table, key, &ret)
self.table.vals[k] = <Py_ssize_t>values[i]
{{endif}}

@cython.boundscheck(False)
def map_locations(self, const {{dtype}}_t[:] values) -> None:
# Used in libindex, safe_sort
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
Expand All @@ -488,6 +497,7 @@ cdef class {{name}}HashTable(HashTable):
@cython.boundscheck(False)
def lookup(self, const {{dtype}}_t[:] values) -> ndarray:
# -> np.ndarray[np.intp]
# Used in safe_sort, IndexEngine.get_indexer
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
Expand Down
2 changes: 1 addition & 1 deletion pandas/core/sorting.py
Original file line number Diff line number Diff line change
Expand Up @@ -576,7 +576,7 @@ def get_flattened_list(
arrays: DefaultDict[int, list[int]] = defaultdict(list)
for labs, level in zip(labels, levels):
table = hashtable.Int64HashTable(ngroups)
table.map(comp_ids, labs.astype(np.int64, copy=False))
table.map_keys_to_values(comp_ids, labs.astype(np.int64, copy=False))
for i in range(ngroups):
arrays[i].append(level[table.get_item(i)])
return [tuple(array) for array in arrays.values()]
Expand Down
151 changes: 138 additions & 13 deletions pandas/tests/libs/test_hashtable.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from contextlib import contextmanager
import struct
import tracemalloc

import numpy as np
Expand Down Expand Up @@ -77,16 +78,16 @@ def test_get_set_contains_len(self, table_type, dtype):
with pytest.raises(KeyError, match=str(index + 2)):
table.get_item(index + 2)

def test_map(self, table_type, dtype, writable):
# PyObjectHashTable has no map-method
if table_type != ht.PyObjectHashTable:
def test_map_keys_to_values(self, table_type, dtype, writable):
# only Int64HashTable has this method
if table_type == ht.Int64HashTable:
N = 77
table = table_type()
keys = np.arange(N).astype(dtype)
vals = np.arange(N).astype(np.int64) + N
keys.flags.writeable = writable
vals.flags.writeable = writable
table.map(keys, vals)
table.map_keys_to_values(keys, vals)
for i in range(N):
assert table.get_item(keys[i]) == i + N

Expand Down Expand Up @@ -180,6 +181,124 @@ def test_no_reallocation(self, table_type, dtype, N):
assert n_buckets_start == clean_table.get_state()["n_buckets"]


class TestHashTableUnsorted:
# TODO: moved from test_algos; may be redundancies with other tests
def test_string_hashtable_set_item_signature(self):
# GH#30419 fix typing in StringHashTable.set_item to prevent segfault
tbl = ht.StringHashTable()

tbl.set_item("key", 1)
assert tbl.get_item("key") == 1

with pytest.raises(TypeError, match="'key' has incorrect type"):
# key arg typed as string, not object
tbl.set_item(4, 6)
with pytest.raises(TypeError, match="'val' has incorrect type"):
tbl.get_item(4)

def test_lookup_nan(self, writable):
# GH#21688 ensure we can deal with readonly memory views
xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3])
xs.setflags(write=writable)
m = ht.Float64HashTable()
m.map_locations(xs)
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp))

def test_add_signed_zeros(self):
# GH#21866 inconsistent hash-function for float64
# default hash-function would lead to different hash-buckets
# for 0.0 and -0.0 if there are more than 2^30 hash-buckets
# but this would mean 16GB
N = 4 # 12 * 10**8 would trigger the error, if you have enough memory
m = ht.Float64HashTable(N)
m.set_item(0.0, 0)
m.set_item(-0.0, 0)
assert len(m) == 1 # 0.0 and -0.0 are equivalent

def test_add_different_nans(self):
# GH#21866 inconsistent hash-function for float64
# create different nans from bit-patterns:
NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0]
NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0]
assert NAN1 != NAN1
assert NAN2 != NAN2
# default hash function would lead to different hash-buckets
# for NAN1 and NAN2 even if there are only 4 buckets:
m = ht.Float64HashTable()
m.set_item(NAN1, 0)
m.set_item(NAN2, 0)
assert len(m) == 1 # NAN1 and NAN2 are equivalent

def test_lookup_overflow(self, writable):
xs = np.array([1, 2, 2**63], dtype=np.uint64)
# GH 21688 ensure we can deal with readonly memory views
xs.setflags(write=writable)
m = ht.UInt64HashTable()
m.map_locations(xs)
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp))

@pytest.mark.parametrize("nvals", [0, 10]) # resizing to 0 is special case
@pytest.mark.parametrize(
"htable, uniques, dtype, safely_resizes",
[
(ht.PyObjectHashTable, ht.ObjectVector, "object", False),
(ht.StringHashTable, ht.ObjectVector, "object", True),
(ht.Float64HashTable, ht.Float64Vector, "float64", False),
(ht.Int64HashTable, ht.Int64Vector, "int64", False),
(ht.Int32HashTable, ht.Int32Vector, "int32", False),
(ht.UInt64HashTable, ht.UInt64Vector, "uint64", False),
],
)
def test_vector_resize(
self, writable, htable, uniques, dtype, safely_resizes, nvals
):
# Test for memory errors after internal vector
# reallocations (GH 7157)
vals = np.array(np.random.randn(1000), dtype=dtype)

# GH 21688 ensures we can deal with read-only memory views
vals.setflags(write=writable)

# initialise instances; cannot initialise in parametrization,
# as otherwise external views would be held on the array (which is
# one of the things this test is checking)
htable = htable()
uniques = uniques()

# get_labels may append to uniques
htable.get_labels(vals[:nvals], uniques, 0, -1)
# to_array() sets an external_view_exists flag on uniques.
tmp = uniques.to_array()
oldshape = tmp.shape

# subsequent get_labels() calls can no longer append to it
# (except for StringHashTables + ObjectVector)
if safely_resizes:
htable.get_labels(vals, uniques, 0, -1)
else:
with pytest.raises(ValueError, match="external reference.*"):
htable.get_labels(vals, uniques, 0, -1)

uniques.to_array() # should not raise here
assert tmp.shape == oldshape

@pytest.mark.parametrize(
"hashtable",
[
ht.PyObjectHashTable,
ht.StringHashTable,
ht.Float64HashTable,
ht.Int64HashTable,
ht.Int32HashTable,
ht.UInt64HashTable,
],
)
def test_hashtable_large_sizehint(self, hashtable):
# GH#22729 smoketest for not raising when passing a large size_hint
size_hint = np.iinfo(np.uint32).max + 1
hashtable(size_hint=size_hint)


class TestPyObjectHashTableWithNans:
def test_nan_float(self):
nan1 = float("nan")
Expand Down Expand Up @@ -322,15 +441,6 @@ def test_get_set_contains_len(self, table_type, dtype):
assert index in table
assert table.get_item(index) == 41

def test_map(self, table_type, dtype):
N = 332
table = table_type()
keys = np.full(N, np.nan, dtype=dtype)
vals = (np.arange(N) + N).astype(np.int64)
table.map(keys, vals)
assert len(table) == 1
assert table.get_item(np.nan) == 2 * N - 1

def test_map_locations(self, table_type, dtype):
N = 10
table = table_type()
Expand Down Expand Up @@ -468,6 +578,21 @@ def test_unique_label_indices_intp(writable):
tm.assert_numpy_array_equal(result, expected)


def test_unique_label_indices():

a = np.random.randint(1, 1 << 10, 1 << 15).astype(np.intp)

left = ht.unique_label_indices(a)
right = np.unique(a, return_index=True)[1]

tm.assert_numpy_array_equal(left, right, check_dtype=False)

a[np.random.choice(len(a), 10)] = -1
left = ht.unique_label_indices(a)
right = np.unique(a, return_index=True)[1][1:]
tm.assert_numpy_array_equal(left, right, check_dtype=False)


@pytest.mark.parametrize(
"dtype",
[
Expand Down
6 changes: 6 additions & 0 deletions pandas/tests/series/methods/test_unique.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,12 @@


class TestUnique:
def test_unique_uint64(self):
ser = Series([1, 2, 2**63, 2**63], dtype=np.uint64)
res = ser.unique()
exp = np.array([1, 2, 2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(res, exp)

def test_unique_data_ownership(self):
# it works! GH#1807
Series(Series(["a", "c", "b"]).unique()).sort_values()
Expand Down
Loading