Skip to content

PERF: Merge empty frame #45838

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Feb 9, 2022
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions asv_bench/benchmarks/join_merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,6 +216,12 @@ def time_merge_dataframe_integer_2key(self, sort):
def time_merge_dataframe_integer_key(self, sort):
merge(self.df, self.df2, on="key1", sort=sort)

def time_merge_dataframe_empty_right(self, sort):
merge(self.left, self.right.iloc[:0], sort=sort)

def time_merge_dataframe_empty_left(self, sort):
merge(self.left.iloc[:0], self.right, sort=sort)

def time_merge_dataframes_cross(self, sort):
merge(self.left.loc[:2000], self.right.loc[:2000], how="cross", sort=sort)

Expand Down
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.5.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,7 @@ Performance improvements
- Performance improvement in :meth:`DataFrame.duplicated` when subset consists of only one column (:issue:`45236`)
- Performance improvement in :meth:`.GroupBy.transform` when broadcasting values for user-defined functions (:issue:`45708`)
- Performance improvement in :meth:`.GroupBy.transform` for user-defined functions when only a single group exists (:issue:`44977`)
- Performance improvement in :meth:`DataFrame.merge` when left and/or right are empty (:issue:`45838`)
Copy link
Member

@phofl phofl Feb 6, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think we normally use :func: merge instead of DataFrame.merge?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

updated to :func: merge. thanks

-

.. ---------------------------------------------------------------------------
Expand Down
53 changes: 51 additions & 2 deletions pandas/core/reshape/merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -977,7 +977,6 @@ def _get_join_info(
)
else:
join_index = self.right.index.take(right_indexer)
left_indexer = np.array([-1] * len(join_index), dtype=np.intp)
elif self.left_index:
if self.how == "asof":
# GH#33463 asof should always behave like a left merge
Expand All @@ -997,7 +996,6 @@ def _get_join_info(
)
else:
join_index = self.left.index.take(left_indexer)
right_indexer = np.array([-1] * len(join_index), dtype=np.intp)
else:
join_index = Index(np.arange(len(left_indexer)))

Expand Down Expand Up @@ -1477,6 +1475,20 @@ def get_join_indexers(
right_keys
), "left_key and right_keys must be the same length"

# fast-path for empty left/right
left_n = len(left_keys[0])
right_n = len(right_keys[0])
if left_n == 0:
if how in ["left", "inner", "cross"]:
return _get_empty_indexer()
elif not sort and how in ["right", "outer"]:
return _get_no_sort_one_missing_indexer(right_n, True)
elif right_n == 0:
if how in ["right", "inner", "cross"]:
return _get_empty_indexer()
elif not sort and how in ["left", "outer"]:
return _get_no_sort_one_missing_indexer(left_n, False)

# get left & right join labels and num. of levels at each location
mapped = (
_factorize_keys(left_keys[n], right_keys[n], sort=sort, how=how)
Expand Down Expand Up @@ -2055,6 +2067,43 @@ def _get_single_indexer(
return libjoin.left_outer_join(left_key, right_key, count, sort=sort)


def _get_empty_indexer() -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]:
"""Return empty join indexers."""
return (
np.array([], dtype=np.intp),
np.array([], dtype=np.intp),
)


def _get_no_sort_one_missing_indexer(
n: int, left_missing: bool
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]:
"""
Return join indexers where all of one side is selected without sorting
and none of the other side is selected.

Parameters
----------
n : int
Length of indexers to create.
left_missing : bool
If True, the left indexer will contain only -1's.
If False, the right indexer will contain only -1's.

Returns
-------
np.ndarray[np.intp]
Left indexer
np.ndarray[np.intp]
Right indexer
"""
idx = np.arange(n, dtype=np.intp)
idx_missing = np.full(shape=n, fill_value=-1, dtype=np.intp)
if left_missing:
return idx_missing, idx
return idx, idx_missing


def _left_join_on_index(
left_ax: Index, right_ax: Index, join_keys, sort: bool = False
) -> tuple[Index, npt.NDArray[np.intp] | None, npt.NDArray[np.intp]]:
Expand Down
40 changes: 40 additions & 0 deletions pandas/tests/reshape/merge/test_merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -1717,6 +1717,46 @@ def test_merge_ea_with_string(self, join_type, string_dtype):
)
tm.assert_series_equal(merged.dtypes, expected)

@pytest.mark.parametrize(
"left_empty, how, exp",
[
(False, "left", "left"),
(False, "right", "empty"),
(False, "inner", "empty"),
(False, "outer", "left"),
(False, "cross", "empty_cross"),
(True, "left", "empty"),
(True, "right", "right"),
(True, "inner", "empty"),
(True, "outer", "right"),
(True, "cross", "empty_cross"),
],
)
def test_merge_empty(self, left_empty, how, exp):

left = DataFrame({"A": [2, 1], "B": [3, 4]})
right = DataFrame({"A": [1], "C": [5]}, dtype="int64")

if left_empty:
left = left.head(0)
else:
right = right.head(0)

result = left.merge(right, how=how)

if exp == "left":
expected = DataFrame({"A": [2, 1], "B": [3, 4], "C": [np.nan, np.nan]})
elif exp == "right":
expected = DataFrame({"B": [np.nan], "A": [1], "C": [5]})
elif exp == "empty":
expected = DataFrame(columns=["A", "B", "C"], dtype="int64")
if left_empty:
expected = expected[["B", "A", "C"]]
elif exp == "empty_cross":
expected = DataFrame(columns=["A_x", "B", "A_y", "C"], dtype="int64")

tm.assert_frame_equal(result, expected)


@pytest.fixture
def left():
Expand Down