Skip to content

TST: tests for nullable issues #45167

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jan 3, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions pandas/tests/arrays/categorical/test_astype.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
import numpy as np

from pandas import (
Categorical,
CategoricalDtype,
array,
)
import pandas._testing as tm


class TestAstype:
def test_astype_str_int_categories_to_nullable_int(self):
# GH#39616
dtype = CategoricalDtype([str(i) for i in range(5)])
arr = Categorical.from_codes(np.random.randint(5, size=20), dtype=dtype)

res = arr.astype("Int64")
expected = array(arr.astype("int64"), dtype="Int64")
tm.assert_extension_array_equal(res, expected)
9 changes: 9 additions & 0 deletions pandas/tests/arrays/categorical/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -511,6 +511,15 @@ def test_construction_with_null(self, klass, nulls_fixture):

tm.assert_categorical_equal(result, expected)

def test_from_codes_nullable_int_categories(self, any_numeric_ea_dtype):
# GH#39649
cats = pd.array(range(5), dtype=any_numeric_ea_dtype)
codes = np.random.randint(5, size=3)
dtype = CategoricalDtype(cats)
arr = Categorical.from_codes(codes, dtype=dtype)
assert arr.categories.dtype == cats.dtype
tm.assert_index_equal(arr.categories, Index(cats))

def test_from_codes_empty(self):
cat = ["a", "b", "c"]
result = Categorical.from_codes([], categories=cat)
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/arrays/integer/test_arithmetic.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def test_div(dtype):

@pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
def test_divide_by_zero(zero, negative):
# https://github.com/pandas-dev/pandas/issues/27398
# https://github.com/pandas-dev/pandas/issues/27398, GH#22793
a = pd.array([0, 1, -1, None], dtype="Int64")
result = a / zero
expected = FloatingArray(
Expand Down
20 changes: 20 additions & 0 deletions pandas/tests/indexing/test_loc.py
Original file line number Diff line number Diff line change
Expand Up @@ -2714,6 +2714,26 @@ def test_loc_getitem_multiindex_tuple_level():
assert result2 == 6


def test_loc_getitem_nullable_index_with_duplicates():
# GH#34497
df = DataFrame(
data=np.array([[1, 2, 3, 4], [5, 6, 7, 8], [1, 2, np.nan, np.nan]]).T,
columns=["a", "b", "c"],
dtype="Int64",
)
df2 = df.set_index("c")
assert df2.index.dtype == "Int64"

res = df2.loc[1]
expected = Series([1, 5], index=df2.columns, dtype="Int64", name=1)
tm.assert_series_equal(res, expected)

# pd.NA and duplicates in an object-dtype Index
df2.index = df2.index.astype(object)
res = df2.loc[1]
tm.assert_series_equal(res, expected)


class TestLocSeries:
@pytest.mark.parametrize("val,expected", [(2 ** 63 - 1, 3), (2 ** 63, 4)])
def test_loc_uint64(self, val, expected):
Expand Down