Skip to content

BUG: FloatingArray * np.timedelta64 #44772

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.4.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -643,6 +643,7 @@ Numeric
- Bug in arithmetic operations involving :class:`RangeIndex` where the result would have the incorrect ``name`` (:issue:`43962`)
- Bug in arithmetic operations involving :class:`Series` where the result could have the incorrect ``name`` when the operands having matching NA or matching tuple names (:issue:`44459`)
- Bug in division with ``IntegerDtype`` or ``BooleanDtype`` array and NA scalar incorrectly raising (:issue:`44685`)
- Bug in multiplying a :class:`Series` with ``FloatingDtype`` with a timedelta-like scalar incorrectly raising (:issue:`44772`)
-

Conversion
Expand Down
31 changes: 0 additions & 31 deletions pandas/core/arrays/boolean.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@

from pandas.core.dtypes.common import (
is_bool_dtype,
is_float,
is_float_dtype,
is_integer_dtype,
is_list_like,
Expand Down Expand Up @@ -532,35 +531,5 @@ def _arith_method(self, other, op):

return self._maybe_mask_result(result, mask, other, op_name)

def _maybe_mask_result(self, result, mask, other, op_name: str):
"""
Parameters
----------
result : array-like
mask : array-like bool
other : scalar or array-like
op_name : str
"""
# if we have a float operand we are by-definition
# a float result
# or our op is a divide
if (is_float_dtype(other) or is_float(other)) or (
op_name in ["rtruediv", "truediv"]
):
from pandas.core.arrays import FloatingArray

return FloatingArray(result, mask, copy=False)

elif is_bool_dtype(result):
return BooleanArray(result, mask, copy=False)

elif is_integer_dtype(result):
from pandas.core.arrays import IntegerArray

return IntegerArray(result, mask, copy=False)
else:
result[mask] = np.nan
return result

def __abs__(self):
return self.copy()
21 changes: 0 additions & 21 deletions pandas/core/arrays/floating.py
Original file line number Diff line number Diff line change
Expand Up @@ -354,27 +354,6 @@ def max(self, *, skipna=True, axis: int | None = 0, **kwargs):
nv.validate_max((), kwargs)
return super()._reduce("max", skipna=skipna, axis=axis)

def _maybe_mask_result(self, result, mask, other, op_name: str):
"""
Parameters
----------
result : array-like
mask : array-like bool
other : scalar or array-like
op_name : str
"""
# TODO are there cases we don't end up with float?
# if we have a float operand we are by-definition
# a float result
# or our op is a divide
# if (is_float_dtype(other) or is_float(other)) or (
# op_name in ["rtruediv", "truediv"]
# ):
# result[mask] = np.nan
# return result

return type(self)(result, mask, copy=False)


_dtype_docstring = """
An ExtensionDtype for {dtype} data.
Expand Down
29 changes: 0 additions & 29 deletions pandas/core/arrays/integer.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
import numpy as np

from pandas._libs import (
iNaT,
lib,
missing as libmissing,
)
Expand All @@ -26,7 +25,6 @@
from pandas.core.dtypes.common import (
is_bool_dtype,
is_datetime64_dtype,
is_float,
is_float_dtype,
is_integer_dtype,
is_object_dtype,
Expand Down Expand Up @@ -427,33 +425,6 @@ def max(self, *, skipna=True, axis: int | None = 0, **kwargs):
nv.validate_max((), kwargs)
return super()._reduce("max", skipna=skipna, axis=axis)

def _maybe_mask_result(self, result, mask, other, op_name: str):
"""
Parameters
----------
result : array-like
mask : array-like bool
other : scalar or array-like
op_name : str
"""
# if we have a float operand we are by-definition
# a float result
# or our op is a divide
if (is_float_dtype(other) or is_float(other)) or (
op_name in ["rtruediv", "truediv"]
):
from pandas.core.arrays import FloatingArray

return FloatingArray(result, mask, copy=False)

if result.dtype == "timedelta64[ns]":
from pandas.core.arrays import TimedeltaArray

result[mask] = iNaT
return TimedeltaArray._simple_new(result)

return type(self)(result, mask, copy=False)


_dtype_docstring = """
An ExtensionDtype for {dtype} integer data.
Expand Down
45 changes: 45 additions & 0 deletions pandas/core/arrays/masked.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
import numpy as np

from pandas._libs import (
iNaT,
lib,
missing as libmissing,
)
Expand Down Expand Up @@ -39,9 +40,11 @@
is_bool,
is_bool_dtype,
is_dtype_equal,
is_float,
is_float_dtype,
is_integer_dtype,
is_list_like,
is_numeric_dtype,
is_object_dtype,
is_scalar,
is_string_dtype,
Expand Down Expand Up @@ -543,6 +546,48 @@ def _cmp_method(self, other, op) -> BooleanArray:

return BooleanArray(result, mask, copy=False)

def _maybe_mask_result(self, result, mask, other, op_name: str):
"""
Parameters
----------
result : array-like
mask : array-like bool
other : scalar or array-like
op_name : str
"""
# if we have a float operand we are by-definition
# a float result
# or our op is a divide
if (
(is_float_dtype(other) or is_float(other))
or (op_name in ["rtruediv", "truediv"])
or (is_float_dtype(self.dtype) and is_numeric_dtype(result.dtype))
):
from pandas.core.arrays import FloatingArray

return FloatingArray(result, mask, copy=False)

elif is_bool_dtype(result):
from pandas.core.arrays import BooleanArray

return BooleanArray(result, mask, copy=False)

elif result.dtype == "timedelta64[ns]":
# e.g. test_numeric_arr_mul_tdscalar_numexpr_path
from pandas.core.arrays import TimedeltaArray

result[mask] = iNaT
return TimedeltaArray._simple_new(result)

elif is_integer_dtype(result):
from pandas.core.arrays import IntegerArray

return IntegerArray(result, mask, copy=False)

else:
result[mask] = np.nan
return result

def isna(self) -> np.ndarray:
return self._mask.copy()

Expand Down
4 changes: 0 additions & 4 deletions pandas/core/arrays/numeric.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
missing as libmissing,
)
from pandas.compat.numpy import function as nv
from pandas.errors import AbstractMethodError

from pandas.core.dtypes.common import (
is_float,
Expand Down Expand Up @@ -80,9 +79,6 @@ class NumericArray(BaseMaskedArray):
Base class for IntegerArray and FloatingArray.
"""

def _maybe_mask_result(self, result, mask, other, op_name: str):
raise AbstractMethodError(self)

def _arith_method(self, other, op):
op_name = op.__name__
omask = None
Expand Down
11 changes: 8 additions & 3 deletions pandas/tests/arithmetic/test_numeric.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,13 +213,18 @@ def test_numeric_arr_mul_tdscalar(self, scalar_td, numeric_idx, box_with_array):
],
ids=lambda x: type(x).__name__,
)
def test_numeric_arr_mul_tdscalar_numexpr_path(self, scalar_td, box_with_array):
@pytest.mark.parametrize("dtype", [np.int64, np.float64])
def test_numeric_arr_mul_tdscalar_numexpr_path(
self, dtype, scalar_td, box_with_array
):
# GH#44772 for the float64 case
box = box_with_array

arr = np.arange(2 * 10 ** 4).astype(np.int64)
arr_i8 = np.arange(2 * 10 ** 4).astype(np.int64, copy=False)
arr = arr_i8.astype(dtype, copy=False)
obj = tm.box_expected(arr, box, transpose=False)

expected = arr.view("timedelta64[D]").astype("timedelta64[ns]")
expected = arr_i8.view("timedelta64[D]").astype("timedelta64[ns]")
expected = tm.box_expected(expected, box, transpose=False)

result = obj * scalar_td
Expand Down