Skip to content

PERF: Improve performance in rolling.mean(engine=numba) #44176

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Oct 28, 2021
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v1.4.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -426,7 +426,7 @@ Performance improvements
- :meth:`SparseArray.min` and :meth:`SparseArray.max` no longer require converting to a dense array (:issue:`43526`)
- Indexing into a :class:`SparseArray` with a ``slice`` with ``step=1`` no longer requires converting to a dense array (:issue:`43777`)
- Performance improvement in :meth:`SparseArray.take` with ``allow_fill=False`` (:issue:`43654`)
- Performance improvement in :meth:`.Rolling.mean` and :meth:`.Expanding.mean` with ``engine="numba"`` (:issue:`43612`)
- Performance improvement in :meth:`.Rolling.mean`, :meth:`.Expanding.mean`, :meth:`.Rolling.sum`, :meth:`.Expanding.sum` with ``engine="numba"`` (:issue:`43612`, :issue:`44176`)
- Improved performance of :meth:`pandas.read_csv` with ``memory_map=True`` when file encoding is UTF-8 (:issue:`43787`)
- Performance improvement in :meth:`RangeIndex.sort_values` overriding :meth:`Index.sort_values` (:issue:`43666`)
- Performance improvement in :meth:`RangeIndex.insert` (:issue:`43988`)
Expand Down
3 changes: 2 additions & 1 deletion pandas/core/_numba/kernels/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from pandas.core._numba.kernels.mean_ import sliding_mean
from pandas.core._numba.kernels.sum_ import sliding_sum

__all__ = ["sliding_mean"]
__all__ = ["sliding_mean", "sliding_sum"]
17 changes: 2 additions & 15 deletions pandas/core/_numba/kernels/mean_.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""
Numba 1D aggregation kernels that can be shared by
Numba 1D mean kernels that can be shared by
* Dataframe / Series
* groupby
* rolling / expanding
Expand All @@ -11,20 +11,7 @@
import numba
import numpy as np


@numba.jit(nopython=True, nogil=True, parallel=False)
def is_monotonic_increasing(bounds: np.ndarray) -> bool:
"""Check if int64 values are monotonically increasing."""
n = len(bounds)
if n < 2:
return True
prev = bounds[0]
for i in range(1, n):
cur = bounds[i]
if cur < prev:
return False
prev = cur
return True
from pandas.core._numba.kernels.shared import is_monotonic_increasing


@numba.jit(nopython=True, nogil=True, parallel=False)
Expand Down
17 changes: 17 additions & 0 deletions pandas/core/_numba/kernels/shared.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
import numba
import numpy as np


@numba.jit(nopython=True, nogil=True, parallel=False)
def is_monotonic_increasing(bounds: np.ndarray) -> bool:
"""Check if int64 values are monotonically increasing."""
n = len(bounds)
if n < 2:
return True
prev = bounds[0]
for i in range(1, n):
cur = bounds[i]
if cur < prev:
return False
prev = cur
return True
98 changes: 98 additions & 0 deletions pandas/core/_numba/kernels/sum_.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
"""
Numba 1D sum kernels that can be shared by
* Dataframe / Series
* groupby
* rolling / expanding

Mirrors pandas/_libs/window/aggregation.pyx
"""
from __future__ import annotations

import numba
import numpy as np

from pandas.core._numba.kernels.shared import is_monotonic_increasing


@numba.jit(nopython=True, nogil=True, parallel=False)
def add_sum(
val: float, nobs: int, sum_x: float, compensation: float
) -> tuple[int, float, float]:
if not np.isnan(val):
nobs += 1
y = val - compensation
t = sum_x + y
compensation = t - sum_x - y
sum_x = t
return nobs, sum_x, compensation


@numba.jit(nopython=True, nogil=True, parallel=False)
def remove_sum(
val: float, nobs: int, sum_x: float, compensation: float
) -> tuple[int, float, float]:
if not np.isnan(val):
nobs -= 1
y = -val - compensation
t = sum_x + y
compensation = t - sum_x - y
sum_x = t
return nobs, sum_x, compensation


@numba.jit(nopython=True, nogil=True, parallel=False)
def sliding_sum(
values: np.ndarray,
start: np.ndarray,
end: np.ndarray,
min_periods: int,
) -> np.ndarray:
N = len(start)
nobs = 0
sum_x = 0.0
compensation_add = 0.0
compensation_remove = 0.0

is_monotonic_increasing_bounds = is_monotonic_increasing(
start
) and is_monotonic_increasing(end)

output = np.empty(N, dtype=np.float64)

for i in range(N):
s = start[i]
e = end[i]
if i == 0 or not is_monotonic_increasing_bounds:
for j in range(s, e):
val = values[j]
nobs, sum_x, compensation_add = add_sum(
val, nobs, sum_x, compensation_add
)
else:
for j in range(start[i - 1], s):
val = values[j]
nobs, sum_x, compensation_remove = remove_sum(
val, nobs, sum_x, compensation_remove
)

for j in range(end[i - 1], e):
val = values[j]
nobs, sum_x, compensation_add = add_sum(
val, nobs, sum_x, compensation_add
)

if nobs == 0 == nobs:
result = 0.0
elif nobs >= min_periods:
result = sum_x
else:
result = np.nan

output[i] = result

if not is_monotonic_increasing_bounds:
nobs = 0
sum_x = 0.0
compensation_remove = 0.0

return output
15 changes: 8 additions & 7 deletions pandas/core/window/rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -1345,15 +1345,16 @@ def sum(
if maybe_use_numba(engine):
if self.method == "table":
func = generate_manual_numpy_nan_agg_with_axis(np.nansum)
return self.apply(
func,
raw=True,
engine=engine,
engine_kwargs=engine_kwargs,
)
else:
func = np.nansum
from pandas.core._numba.kernels import sliding_sum

return self.apply(
func,
raw=True,
engine=engine,
engine_kwargs=engine_kwargs,
)
return self._numba_apply(sliding_sum, "rolling_sum", engine_kwargs)
window_func = window_aggregations.roll_sum
return self._apply(window_func, name="sum", **kwargs)

Expand Down
8 changes: 5 additions & 3 deletions pandas/tests/window/test_numba.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,15 +59,17 @@ def test_numba_vs_cython_rolling_methods(
expected = getattr(roll, method)(engine="cython")

# Check the cache
if method != "mean":
if method not in ("mean", "sum"):
assert (
getattr(np, f"nan{method}"),
"Rolling_apply_single",
) in NUMBA_FUNC_CACHE

tm.assert_equal(result, expected)

@pytest.mark.parametrize("data", [DataFrame(np.eye(5)), Series(range(5))])
@pytest.mark.parametrize(
"data", [DataFrame(np.eye(5)), Series(range(5), name="foo")]
)
def test_numba_vs_cython_expanding_methods(
self, data, nogil, parallel, nopython, arithmetic_numba_supported_operators
):
Expand All @@ -82,7 +84,7 @@ def test_numba_vs_cython_expanding_methods(
expected = getattr(expand, method)(engine="cython")

# Check the cache
if method != "mean":
if method not in ("mean", "sum"):
assert (
getattr(np, f"nan{method}"),
"Expanding_apply_single",
Expand Down