Skip to content

Backport PR #43154 on branch 1.3.x (Updating _resolve_numeric_only function of GroupBy) #43481

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.3.3.rst
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ Fixed regressions
- Fixed regression in :meth:`DataFrame.__getitem__` raising error for slice of :class:`DatetimeIndex` when index is non monotonic (:issue:`43223`)
- Fixed regression in :meth:`.Resampler.aggregate` when used after column selection would raise if ``func`` is a list of aggregation functions (:issue:`42905`)
- Fixed regression in :meth:`DataFrame.corr` where Kendall correlation would produce incorrect results for columns with repeated values (:issue:`43401`)
- Fixed regression in :meth:`DataFrame.groupby` where aggregation on columns with object types dropped results on those columns (:issue:`42395`, :issue:`43108`)
- Fixed regression in :meth:`Series.fillna` raising ``TypeError`` when filling ``float`` ``Series`` with list-like fill value having a dtype which couldn't cast lostlessly (like ``float32`` filled with ``float64``) (:issue:`43424`)
-

Expand Down
8 changes: 8 additions & 0 deletions pandas/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1126,6 +1126,14 @@ def _resolve_numeric_only(self, numeric_only: bool | lib.NoDefault) -> bool:
if self.obj.ndim == 2:
# i.e. DataFrameGroupBy
numeric_only = True
# GH#42395 GH#43108 GH#43154
# Regression from 1.2.5 to 1.3 caused object columns to be dropped
obj = self._obj_with_exclusions
check = obj._get_numeric_data()
if len(obj.columns) and not len(check.columns) and not obj.empty:
numeric_only = False
# TODO: v1.4+ Add FutureWarning

else:
numeric_only = False

Expand Down
3 changes: 2 additions & 1 deletion pandas/tests/groupby/aggregate/test_cython.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,8 @@ def test_cython_agg_nothing_to_agg():

frame = DataFrame({"a": np.random.randint(0, 5, 50), "b": ["foo", "bar"] * 25})

result = frame[["b"]].groupby(frame["a"]).mean()
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = frame[["b"]].groupby(frame["a"]).mean()
expected = DataFrame([], index=frame["a"].sort_values().drop_duplicates())
tm.assert_frame_equal(result, expected)

Expand Down
62 changes: 62 additions & 0 deletions pandas/tests/groupby/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
MultiIndex,
RangeIndex,
Series,
Timedelta,
Timestamp,
date_range,
read_csv,
Expand Down Expand Up @@ -2377,6 +2378,67 @@ def test_groupby_empty_multi_column(as_index, numeric_only):
tm.assert_frame_equal(result, expected)


def test_groupby_aggregation_non_numeric_dtype():
# GH #43108
df = DataFrame(
[["M", [1]], ["M", [1]], ["W", [10]], ["W", [20]]], columns=["MW", "v"]
)

expected = DataFrame(
{
"v": [[1, 1], [10, 20]],
},
index=Index(["M", "W"], dtype="object", name="MW"),
)

gb = df.groupby(by=["MW"])
result = gb.sum()
tm.assert_frame_equal(result, expected)


def test_groupby_aggregation_multi_non_numeric_dtype():
# GH #42395
df = DataFrame(
{
"x": [1, 0, 1, 1, 0],
"y": [Timedelta(i, "days") for i in range(1, 6)],
"z": [Timedelta(i * 10, "days") for i in range(1, 6)],
}
)

expected = DataFrame(
{
"y": [Timedelta(i, "days") for i in range(7, 9)],
"z": [Timedelta(i * 10, "days") for i in range(7, 9)],
},
index=Index([0, 1], dtype="int64", name="x"),
)

gb = df.groupby(by=["x"])
result = gb.sum()
tm.assert_frame_equal(result, expected)


def test_groupby_aggregation_numeric_with_non_numeric_dtype():
# GH #43108
df = DataFrame(
{
"x": [1, 0, 1, 1, 0],
"y": [Timedelta(i, "days") for i in range(1, 6)],
"z": list(range(1, 6)),
}
)

expected = DataFrame(
{"z": [7, 8]},
index=Index([0, 1], dtype="int64", name="x"),
)

gb = df.groupby(by=["x"])
result = gb.sum()
tm.assert_frame_equal(result, expected)


def test_groupby_filtered_df_std():
# GH 16174
dicts = [
Expand Down