Skip to content

Backport PR #43403: Revert Cythonized Kendall implementation and improve test case to prevent regressions #43431

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 6, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.3.3.rst
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ Fixed regressions
- Fixed regression in :meth:`RangeIndex.where` and :meth:`RangeIndex.putmask` raising ``AssertionError`` when result did not represent a :class:`RangeIndex` (:issue:`43240`)
- Fixed regression in :meth:`read_parquet` where the ``fastparquet`` engine would not work properly with fastparquet 0.7.0 (:issue:`43075`)
- Fixed regression in :func:`is_list_like` where objects with ``__iter__`` set to ``None`` would be identified as iterable (:issue:`43373`)
- Fixed regression in :meth:`DataFrame.corr` where Kendall correlation would produce incorrect results for columns with repeated values (:issue:`43401`)

.. ---------------------------------------------------------------------------
Expand Down
94 changes: 0 additions & 94 deletions pandas/_libs/algos.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -481,100 +481,6 @@ def nancorr_spearman(ndarray[float64_t, ndim=2] mat, Py_ssize_t minp=1) -> ndarr
return result


# ----------------------------------------------------------------------
# Kendall correlation
# Wikipedia article: https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient

@cython.boundscheck(False)
@cython.wraparound(False)
def nancorr_kendall(ndarray[float64_t, ndim=2] mat, Py_ssize_t minp=1) -> ndarray:
"""
Perform kendall correlation on a 2d array

Parameters
----------
mat : np.ndarray[float64_t, ndim=2]
Array to compute kendall correlation on
minp : int, default 1
Minimum number of observations required per pair of columns
to have a valid result.

Returns
-------
numpy.ndarray[float64_t, ndim=2]
Correlation matrix
"""
cdef:
Py_ssize_t i, j, k, xi, yi, N, K
ndarray[float64_t, ndim=2] result
ndarray[float64_t, ndim=2] ranked_mat
ndarray[uint8_t, ndim=2] mask
float64_t currj
ndarray[uint8_t, ndim=1] valid
ndarray[int64_t] sorted_idxs
ndarray[float64_t, ndim=1] col
int64_t n_concordant
int64_t total_concordant = 0
int64_t total_discordant = 0
float64_t kendall_tau
int64_t n_obs
const intp_t[:] labels_n

N, K = (<object>mat).shape

result = np.empty((K, K), dtype=np.float64)
mask = np.isfinite(mat)

ranked_mat = np.empty((N, K), dtype=np.float64)
# For compatibility when calling rank_1d
labels_n = np.zeros(N, dtype=np.intp)

for i in range(K):
ranked_mat[:, i] = rank_1d(mat[:, i], labels_n)

for xi in range(K):
sorted_idxs = ranked_mat[:, xi].argsort()
ranked_mat = ranked_mat[sorted_idxs]
mask = mask[sorted_idxs]
for yi in range(xi + 1, K):
valid = mask[:, xi] & mask[:, yi]
if valid.sum() < minp:
result[xi, yi] = NaN
result[yi, xi] = NaN
else:
# Get columns and order second column using 1st column ranks
if not valid.all():
col = ranked_mat[valid.nonzero()][:, yi]
else:
col = ranked_mat[:, yi]
n_obs = col.shape[0]
total_concordant = 0
total_discordant = 0
for j in range(n_obs - 1):
currj = col[j]
# Count num concordant and discordant pairs
n_concordant = 0
for k in range(j, n_obs):
if col[k] > currj:
n_concordant += 1
total_concordant += n_concordant
total_discordant += (n_obs - 1 - j - n_concordant)
# Note: we do total_concordant+total_discordant here which is
# equivalent to the C(n, 2), the total # of pairs,
# listed on wikipedia
kendall_tau = (total_concordant - total_discordant) / \
(total_concordant + total_discordant)
result[xi, yi] = kendall_tau
result[yi, xi] = kendall_tau

if mask[:, xi].sum() > minp:
result[xi, xi] = 1
else:
result[xi, xi] = NaN

return result


# ----------------------------------------------------------------------

ctypedef fused algos_t:
Expand Down
7 changes: 3 additions & 4 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -9342,7 +9342,8 @@ def corr(
regardless of the callable's behavior.
min_periods : int, optional
Minimum number of observations required per pair of columns
to have a valid result.
to have a valid result. Currently only available for Pearson
and Spearman correlation.
Returns
-------
Expand Down Expand Up @@ -9376,9 +9377,7 @@ def corr(
correl = libalgos.nancorr(mat, minp=min_periods)
elif method == "spearman":
correl = libalgos.nancorr_spearman(mat, minp=min_periods)
elif method == "kendall":
correl = libalgos.nancorr_kendall(mat, minp=min_periods)
elif callable(method):
elif method == "kendall" or callable(method):
if min_periods is None:
min_periods = 1
mat = mat.T
Expand Down
1 change: 1 addition & 0 deletions pandas/tests/frame/methods/test_cov_corr.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,7 @@ class TestDataFrameCorr:
def test_corr_scipy_method(self, float_frame, method):
float_frame["A"][:5] = np.nan
float_frame["B"][5:10] = np.nan
float_frame["A"][:10] = float_frame["A"][10:20]

correls = float_frame.corr(method=method)
expected = float_frame["A"].corr(float_frame["C"], method=method)
Expand Down