Skip to content

BUG: GroupBy.quantile fails with pd.NA #43150

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Sep 4, 2021
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v1.3.3.rst
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ Fixed regressions
- Fixed regression in :class:`DataFrame` constructor failing to broadcast for defined :class:`Index` and len one list of :class:`Timestamp` (:issue:`42810`)
- Performance regression in :meth:`core.window.ewm.ExponentialMovingWindow.mean` (:issue:`42333`)
- Fixed regression in :meth:`.GroupBy.agg` incorrectly raising in some cases (:issue:`42390`)
-
- Fixed regression in :meth:`.GroupBy.quantile` which was failing with ``pandas.NA`` (:issue:`42849`)

.. ---------------------------------------------------------------------------

Expand Down
4 changes: 4 additions & 0 deletions pandas/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ class providing the base-class of operations.
from pandas.core.dtypes.common import (
is_bool_dtype,
is_datetime64_dtype,
is_float_dtype,
is_integer_dtype,
is_numeric_dtype,
is_object_dtype,
Expand Down Expand Up @@ -2448,6 +2449,9 @@ def pre_processor(vals: ArrayLike) -> tuple[np.ndarray, np.dtype | None]:
elif is_timedelta64_dtype(vals.dtype):
inference = np.dtype("timedelta64[ns]")
out = np.asarray(vals).astype(float)
elif isinstance(vals, ExtensionArray) and is_float_dtype(vals):
out = vals.to_numpy(dtype=float, na_value=np.nan)
inference = np.dtype(np.float64)
else:
out = np.asarray(vals)

Expand Down
10 changes: 10 additions & 0 deletions pandas/tests/groupby/test_quantile.py
Original file line number Diff line number Diff line change
Expand Up @@ -287,3 +287,13 @@ def test_columns_groupby_quantile():
)

tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("dtype", [float, "Float64", "Float32"])
def test_groupby_quantile_NA(dtype):
# GH#42849
df = DataFrame({"x": [1, 1], "y": [0.2, np.nan]}, dtype=dtype)
result = df.groupby("x")["y"].quantile(0.5)
expected = pd.Series([0.2], dtype=float, index=[1.0], name="y")
expected.index.name = "x"
tm.assert_series_equal(expected, result)