Skip to content

REF: names no longer needed in _form_blocks, create_block_manager_from_arrays #43114

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions pandas/core/internals/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
from pandas.core.internals.api import make_block # pseudo-public version
from pandas.core.internals.api import (
create_block_manager_from_arrays,
make_block,
)
from pandas.core.internals.array_manager import (
ArrayManager,
SingleArrayManager,
Expand All @@ -18,7 +21,6 @@
from pandas.core.internals.managers import (
BlockManager,
SingleBlockManager,
create_block_manager_from_arrays,
create_block_manager_from_blocks,
)

Expand Down
125 changes: 124 additions & 1 deletion pandas/core/internals/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,16 @@
"""
from __future__ import annotations

from collections import defaultdict
from typing import DefaultDict

import numpy as np

from pandas._libs.internals import BlockPlacement
from pandas._typing import Dtype
from pandas._typing import (
ArrayLike,
Dtype,
)

from pandas.core.dtypes.common import (
is_datetime64tz_dtype,
Expand All @@ -20,14 +26,24 @@

from pandas.core.arrays import DatetimeArray
from pandas.core.construction import extract_array
from pandas.core.indexes.api import Index
from pandas.core.internals.blocks import (
Block,
CategoricalBlock,
DatetimeTZBlock,
ExtensionBlock,
check_ndim,
ensure_block_shape,
extract_pandas_array,
get_block_type,
maybe_coerce_values,
new_block,
)
from pandas.core.internals.managers import (
BlockManager,
construction_error,
multi_blockify,
simple_blockify,
)


Expand Down Expand Up @@ -86,3 +102,110 @@ def maybe_infer_ndim(values, placement: BlockPlacement, ndim: int | None) -> int
else:
ndim = values.ndim
return ndim


def create_block_manager_from_arrays(
arrays,
names: Index,
axes: list[Index],
consolidate: bool = True,
) -> BlockManager:
# Assertions disabled for performance
# assert isinstance(names, Index)
# assert isinstance(axes, list)
# assert all(isinstance(x, Index) for x in axes)

arrays = [extract_array(x, extract_numpy=True) for x in arrays]

try:
blocks = _form_blocks(arrays, names, axes, consolidate)
mgr = BlockManager(blocks, axes)
except ValueError as e:
raise construction_error(len(arrays), arrays[0].shape, axes, e)
if consolidate:
mgr._consolidate_inplace()
return mgr


def _form_blocks(
arrays: list[ArrayLike], names: Index, axes: list[Index], consolidate: bool
) -> list[Block]:
# put "leftover" items in float bucket, where else?
# generalize?
items_dict: DefaultDict[str, list] = defaultdict(list)
extra_locs = []

names_idx = names
if names_idx.equals(axes[0]):
names_indexer = np.arange(len(names_idx))
else:
# Assertion disabled for performance
# assert names_idx.intersection(axes[0]).is_unique
names_indexer = names_idx.get_indexer_for(axes[0])

for i, name_idx in enumerate(names_indexer):
if name_idx == -1:
extra_locs.append(i)
continue

v = arrays[name_idx]

block_type = get_block_type(v)
items_dict[block_type.__name__].append((i, v))

blocks: list[Block] = []
if len(items_dict["NumericBlock"]):
numeric_blocks = multi_blockify(
items_dict["NumericBlock"], consolidate=consolidate
)
blocks.extend(numeric_blocks)

if len(items_dict["DatetimeLikeBlock"]):
dtlike_blocks = multi_blockify(
items_dict["DatetimeLikeBlock"], consolidate=consolidate
)
blocks.extend(dtlike_blocks)

if len(items_dict["DatetimeTZBlock"]):
dttz_blocks = [
DatetimeTZBlock(
ensure_block_shape(extract_array(array), 2),
placement=BlockPlacement(i),
ndim=2,
)
for i, array in items_dict["DatetimeTZBlock"]
]
blocks.extend(dttz_blocks)

if len(items_dict["ObjectBlock"]) > 0:
object_blocks = simple_blockify(
items_dict["ObjectBlock"], np.object_, consolidate=consolidate
)
blocks.extend(object_blocks)

if len(items_dict["CategoricalBlock"]) > 0:
cat_blocks = [
CategoricalBlock(array, placement=BlockPlacement(i), ndim=2)
for i, array in items_dict["CategoricalBlock"]
]
blocks.extend(cat_blocks)

if len(items_dict["ExtensionBlock"]):
external_blocks = [
ExtensionBlock(array, placement=BlockPlacement(i), ndim=2)
for i, array in items_dict["ExtensionBlock"]
]

blocks.extend(external_blocks)

if len(extra_locs):
shape = (len(extra_locs),) + tuple(len(x) for x in axes[1:])

# empty items -> dtype object
block_values = np.empty(shape, dtype=object)
block_values.fill(np.nan)

na_block = new_block(block_values, placement=extra_locs, ndim=2)
blocks.append(na_block)

return blocks
6 changes: 3 additions & 3 deletions pandas/core/internals/construction.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,8 +85,8 @@
from pandas.core.internals.managers import (
BlockManager,
SingleBlockManager,
create_block_manager_from_arrays,
create_block_manager_from_blocks,
create_block_manager_from_column_arrays,
)

if TYPE_CHECKING:
Expand Down Expand Up @@ -131,8 +131,8 @@ def arrays_to_mgr(
axes = [columns, index]

if typ == "block":
return create_block_manager_from_arrays(
arrays, columns, axes, consolidate=consolidate
return create_block_manager_from_column_arrays(
arrays, axes, consolidate=consolidate
)
elif typ == "array":
if len(columns) != len(arrays):
Expand Down
47 changes: 10 additions & 37 deletions pandas/core/internals/managers.py
Original file line number Diff line number Diff line change
Expand Up @@ -1791,21 +1791,19 @@ def create_block_manager_from_blocks(
return mgr


def create_block_manager_from_arrays(
def create_block_manager_from_column_arrays(
arrays,
names: Index,
axes: list[Index],
consolidate: bool = True,
) -> BlockManager:
# Assertions disabled for performance
# assert isinstance(names, Index)
# assert isinstance(axes, list)
# assert all(isinstance(x, Index) for x in axes)

arrays = [extract_array(x, extract_numpy=True) for x in arrays]

try:
blocks = _form_blocks(arrays, names, axes, consolidate)
blocks = _form_blocks(arrays, consolidate)
mgr = BlockManager(blocks, axes)
except ValueError as e:
raise construction_error(len(arrays), arrays[0].shape, axes, e)
Expand Down Expand Up @@ -1843,26 +1841,11 @@ def construction_error(
# -----------------------------------------------------------------------


def _form_blocks(
arrays: list[ArrayLike], names: Index, axes: list[Index], consolidate: bool
) -> list[Block]:
# put "leftover" items in float bucket, where else?
# generalize?
items_dict: DefaultDict[str, list] = defaultdict(list)
extra_locs = []
def _form_blocks(arrays: list[ArrayLike], consolidate: bool) -> list[Block]:

names_idx = names
if names_idx.equals(axes[0]):
names_indexer = np.arange(len(names_idx))
else:
# Assertion disabled for performance
# assert names_idx.intersection(axes[0]).is_unique
names_indexer = names_idx.get_indexer_for(axes[0])
items_dict: DefaultDict[str, list] = defaultdict(list)

for i, name_idx in enumerate(names_indexer):
if name_idx == -1:
extra_locs.append(i)
continue
for i, name_idx in enumerate(range(len(arrays))):

v = arrays[name_idx]

Expand All @@ -1871,13 +1854,13 @@ def _form_blocks(

blocks: list[Block] = []
if len(items_dict["NumericBlock"]):
numeric_blocks = _multi_blockify(
numeric_blocks = multi_blockify(
items_dict["NumericBlock"], consolidate=consolidate
)
blocks.extend(numeric_blocks)

if len(items_dict["DatetimeLikeBlock"]):
dtlike_blocks = _multi_blockify(
dtlike_blocks = multi_blockify(
items_dict["DatetimeLikeBlock"], consolidate=consolidate
)
blocks.extend(dtlike_blocks)
Expand All @@ -1894,7 +1877,7 @@ def _form_blocks(
blocks.extend(dttz_blocks)

if len(items_dict["ObjectBlock"]) > 0:
object_blocks = _simple_blockify(
object_blocks = simple_blockify(
items_dict["ObjectBlock"], np.object_, consolidate=consolidate
)
blocks.extend(object_blocks)
Expand All @@ -1914,20 +1897,10 @@ def _form_blocks(

blocks.extend(external_blocks)

if len(extra_locs):
shape = (len(extra_locs),) + tuple(len(x) for x in axes[1:])

# empty items -> dtype object
block_values = np.empty(shape, dtype=object)
block_values.fill(np.nan)

na_block = new_block(block_values, placement=extra_locs, ndim=2)
blocks.append(na_block)

return blocks


def _simple_blockify(tuples, dtype, consolidate: bool) -> list[Block]:
def simple_blockify(tuples, dtype, consolidate: bool) -> list[Block]:
"""
return a single array of a block that has a single dtype; if dtype is
not None, coerce to this dtype
Expand All @@ -1945,7 +1918,7 @@ def _simple_blockify(tuples, dtype, consolidate: bool) -> list[Block]:
return [block]


def _multi_blockify(tuples, dtype: DtypeObj | None = None, consolidate: bool = True):
def multi_blockify(tuples, dtype: DtypeObj | None = None, consolidate: bool = True):
"""return an array of blocks that potentially have different dtypes"""

if not consolidate:
Expand Down