Skip to content

BUG: Fix bug in SeriesGroupBy.value_counts when DataFrame has one row (#42618) #42640

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v1.3.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ Fixed regressions
- Fixed regression for ``SettingWithCopyWarning`` displaying incorrect stacklevel (:issue:`42570`)
- Fixed regression for :func:`merge_asof` raising ``KeyError`` when one of the ``by`` columns is in the index (:issue:`34488`)
- Fixed regression in :func:`to_datetime` returning pd.NaT for inputs that produce duplicated values, when ``cache=True`` (:issue:`42259`)

- Fixed regression in :meth:`SeriesGroupBy.value_counts` that resulted in an ``IndexError`` when called on a Series with one row (:issue:`42618`)

.. ---------------------------------------------------------------------------
Expand Down
2 changes: 1 addition & 1 deletion pandas/core/groupby/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -758,7 +758,7 @@ def apply_series_value_counts():
# new values are where sorted labels change
lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1))
inc = np.r_[True, lchanges]
if not len(lchanges):
if not len(val):
inc = lchanges
inc[idx] = True # group boundaries are also new values
out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts
Expand Down
26 changes: 15 additions & 11 deletions pandas/tests/groupby/test_value_counts.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,23 +122,27 @@ def test_series_groupby_value_counts_with_grouper():
tm.assert_series_equal(result, expected)


def test_series_groupby_value_counts_empty():
@pytest.mark.parametrize("columns", [["A", "B"], ["A", "B", "C"]])
def test_series_groupby_value_counts_empty(columns):
# GH39172
df = DataFrame(columns=["A", "B"])
dfg = df.groupby("A")
df = DataFrame(columns=columns)
dfg = df.groupby(columns[:-1])

result = dfg["B"].value_counts()
expected = Series([], name="B", dtype=result.dtype)
expected.index = MultiIndex.from_arrays([[]] * 2, names=["A", "B"])
result = dfg[columns[-1]].value_counts()
expected = Series([], name=columns[-1], dtype=result.dtype)
expected.index = MultiIndex.from_arrays([[]] * len(columns), names=columns)

tm.assert_series_equal(result, expected)

df = DataFrame(columns=["A", "B", "C"])
dfg = df.groupby(["A", "B"])

result = dfg["C"].value_counts()
expected = Series([], name="C", dtype=result.dtype)
expected.index = MultiIndex.from_arrays([[]] * 3, names=["A", "B", "C"])
@pytest.mark.parametrize("columns", [["A", "B"], ["A", "B", "C"]])
def test_series_groupby_value_counts_one_row(columns):
# GH42618
df = DataFrame(data=[range(len(columns))], columns=columns)
dfg = df.groupby(columns[:-1])

result = dfg[columns[-1]].value_counts()
expected = df.value_counts().rename(columns[-1])

tm.assert_series_equal(result, expected)

Expand Down