Skip to content

Backport PR #41711: REGR: DataFrame reduction with min_count #41766

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.2.5.rst
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ including other versions of pandas.
Fixed regressions
~~~~~~~~~~~~~~~~~
- Regression in :func:`concat` between two :class:`DataFrames` where one has an :class:`Index` that is all-None and the other is :class:`DatetimeIndex` incorrectly raising (:issue:`40841`)
- Fixed regression in :meth:`DataFrame.sum` and :meth:`DataFrame.prod` when ``min_count`` and ``numeric_only`` are both given (:issue:`41074`)
- Regression in :func:`read_csv` when using ``memory_map=True`` with an non-UTF8 encoding (:issue:`40986`)
- Regression in :meth:`DataFrame.replace` and :meth:`Series.replace` when the values to replace is a NumPy float array (:issue:`40371`)

Expand Down
3 changes: 1 addition & 2 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -8786,7 +8786,6 @@ def _reduce(
**kwds,
):

min_count = kwds.get("min_count", 0)
assert filter_type is None or filter_type == "bool", filter_type
out_dtype = "bool" if filter_type == "bool" else None

Expand Down Expand Up @@ -8831,7 +8830,7 @@ def _get_data() -> DataFrame:
data = self._get_bool_data()
return data

if (numeric_only is not None or axis == 0) and min_count == 0:
if numeric_only is not None or axis == 0:
# For numeric_only non-None and axis non-None, we know
# which blocks to use and no try/except is needed.
# For numeric_only=None only the case with axis==0 and no object
Expand Down
2 changes: 1 addition & 1 deletion pandas/core/internals/blocks.py
Original file line number Diff line number Diff line change
Expand Up @@ -391,7 +391,7 @@ def reduce(self, func, ignore_failures: bool = False) -> List["Block"]:
return []
raise

if np.ndim(result) == 0:
if self.values.ndim == 1:
# TODO(EA2D): special case not needed with 2D EAs
res_values = np.array([[result]])
else:
Expand Down
3 changes: 1 addition & 2 deletions pandas/core/nanops.py
Original file line number Diff line number Diff line change
Expand Up @@ -231,8 +231,7 @@ def _maybe_get_mask(
"""
if mask is None:
if is_bool_dtype(values.dtype) or is_integer_dtype(values.dtype):
# Boolean data cannot contain nulls, so signal via mask being None
return None
return np.broadcast_to(False, values.shape)

if skipna or needs_i8_conversion(values.dtype):
mask = isna(values)
Expand Down
29 changes: 22 additions & 7 deletions pandas/tests/frame/test_reductions.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from datetime import timedelta
from decimal import Decimal
import re

from dateutil.tz import tzlocal
import numpy as np
Expand Down Expand Up @@ -783,34 +784,35 @@ def test_sum_corner(self):
assert len(axis1) == 0

@pytest.mark.parametrize("method, unit", [("sum", 0), ("prod", 1)])
def test_sum_prod_nanops(self, method, unit):
@pytest.mark.parametrize("numeric_only", [None, True, False])
def test_sum_prod_nanops(self, method, unit, numeric_only):
idx = ["a", "b", "c"]
df = DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]})
# The default
result = getattr(df, method)
result = getattr(df, method)(numeric_only=numeric_only)
expected = Series([unit, unit, unit], index=idx, dtype="float64")

# min_count=1
result = getattr(df, method)(min_count=1)
result = getattr(df, method)(numeric_only=numeric_only, min_count=1)
expected = Series([unit, unit, np.nan], index=idx)
tm.assert_series_equal(result, expected)

# min_count=0
result = getattr(df, method)(min_count=0)
result = getattr(df, method)(numeric_only=numeric_only, min_count=0)
expected = Series([unit, unit, unit], index=idx, dtype="float64")
tm.assert_series_equal(result, expected)

result = getattr(df.iloc[1:], method)(min_count=1)
result = getattr(df.iloc[1:], method)(numeric_only=numeric_only, min_count=1)
expected = Series([unit, np.nan, np.nan], index=idx)
tm.assert_series_equal(result, expected)

# min_count > 1
df = DataFrame({"A": [unit] * 10, "B": [unit] * 5 + [np.nan] * 5})
result = getattr(df, method)(min_count=5)
result = getattr(df, method)(numeric_only=numeric_only, min_count=5)
expected = Series(result, index=["A", "B"])
tm.assert_series_equal(result, expected)

result = getattr(df, method)(min_count=6)
result = getattr(df, method)(numeric_only=numeric_only, min_count=6)
expected = Series(result, index=["A", "B"])
tm.assert_series_equal(result, expected)

Expand Down Expand Up @@ -1491,3 +1493,16 @@ def test_minmax_extensionarray(method, numeric_only):
[getattr(int64_info, method)], index=Index(["Int64"], dtype="object")
)
tm.assert_series_equal(result, expected)


def test_prod_sum_min_count_mixed_object():
# https://github.com/pandas-dev/pandas/issues/41074
df = DataFrame([1, "a", True])

result = df.prod(axis=0, min_count=1, numeric_only=False)
expected = Series(["a"])
tm.assert_series_equal(result, expected)

msg = re.escape("unsupported operand type(s) for +: 'int' and 'str'")
with pytest.raises(TypeError, match=msg):
df.sum(axis=0, min_count=1, numeric_only=False)