Skip to content

Agg functions for df not respecting numeric only with level #40683

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Apr 8, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/source/whatsnew/v1.3.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -754,6 +754,7 @@ Groupby/resample/rolling
- Bug in :class:`core.window.ewm.ExponentialMovingWindow` when calling ``__getitem__`` would not retain ``com``, ``span``, ``alpha`` or ``halflife`` attributes (:issue:`40164`)
- :class:`core.window.ewm.ExponentialMovingWindow` now raises a ``NotImplementedError`` when specifying ``times`` with ``adjust=False`` due to an incorrect calculation (:issue:`40098`)
- Bug in :meth:`Series.asfreq` and :meth:`DataFrame.asfreq` dropping rows when the index is not sorted (:issue:`39805`)
- Bug in aggregation functions for :class:`DataFrame` not respecting ``numeric_only`` argument when ``level`` keyword was given (:issue:`40660`)

Reshaping
^^^^^^^^^
Expand Down Expand Up @@ -809,7 +810,6 @@ Other
- Bug in :func:`pandas.util.show_versions` where console JSON output was not proper JSON (:issue:`39701`)
- Bug in :meth:`DataFrame.convert_dtypes` incorrectly raised ValueError when called on an empty DataFrame (:issue:`40393`)


.. ---------------------------------------------------------------------------

.. _whatsnew_130.contributors:
Expand Down
11 changes: 9 additions & 2 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -10493,7 +10493,9 @@ def _stat_function(
if axis is None:
axis = self._stat_axis_number
if level is not None:
return self._agg_by_level(name, axis=axis, level=level, skipna=skipna)
return self._agg_by_level(
name, axis=axis, level=level, skipna=skipna, numeric_only=numeric_only
)
return self._reduce(
func, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only
)
Expand Down Expand Up @@ -10554,7 +10556,12 @@ def _min_count_stat_function(
axis = self._stat_axis_number
if level is not None:
return self._agg_by_level(
name, axis=axis, level=level, skipna=skipna, min_count=min_count
name,
axis=axis,
level=level,
skipna=skipna,
min_count=min_count,
numeric_only=numeric_only,
)
return self._reduce(
func,
Expand Down
15 changes: 15 additions & 0 deletions pandas/tests/frame/test_reductions.py
Original file line number Diff line number Diff line change
Expand Up @@ -1546,3 +1546,18 @@ def test_minmax_extensionarray(method, numeric_only):
[getattr(int64_info, method)], index=Index(["Int64"], dtype="object")
)
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("meth", ["max", "min", "sum", "mean", "median"])
def test_groupy_regular_arithmetic_equivalent(meth):
# GH#40660
df = DataFrame(
{"a": [pd.Timedelta(hours=6), pd.Timedelta(hours=7)], "b": [12.1, 13.3]}
)
expected = df.copy()

result = getattr(df, meth)(level=0)
tm.assert_frame_equal(result, expected)

result = getattr(df.groupby(level=0), meth)(numeric_only=False)
tm.assert_frame_equal(result, expected)