Skip to content

BUG: GH4017, efficiently support non-unique indicies with iloc #4018

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 26, 2013
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions doc/source/release.rst
Original file line number Diff line number Diff line change
Expand Up @@ -212,6 +212,8 @@ pandas 0.12
- Extend ``reindex`` to correctly deal with non-unique indices (:issue:`3679`)
- ``DataFrame.itertuples()`` now works with frames with duplicate column
names (:issue:`3873`)
- Bug in non-unique indexing via ``iloc`` (:issue:`4017`); added ``takeable`` argument to
``reindex`` for location-based taking

- Fixed bug in groupby with empty series referencing a variable before assignment. (:issue:`3510`)
- Allow index name to be used in groupby for non MultiIndex (:issue:`4014`)
Expand Down
2 changes: 2 additions & 0 deletions doc/source/v0.12.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -410,6 +410,8 @@ Bug Fixes
- Extend ``reindex`` to correctly deal with non-unique indices (:issue:`3679`)
- ``DataFrame.itertuples()`` now works with frames with duplicate column
names (:issue:`3873`)
- Bug in non-unique indexing via ``iloc`` (:issue:`4017`); added ``takeable`` argument to
``reindex`` for location-based taking

- ``DataFrame.from_records`` did not accept empty recarrays (:issue:`3682`)
- ``read_html`` now correctly skips tests (:issue:`3741`)
Expand Down
21 changes: 13 additions & 8 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -1979,7 +1979,9 @@ def _ixs(self, i, axis=0, copy=False):
else:
label = self.index[i]
if isinstance(label, Index):
return self.reindex(label)

# a location index by definition
return self.reindex(label, takeable=True)
else:
try:
new_values = self._data.fast_2d_xs(i, copy=copy)
Expand Down Expand Up @@ -2590,7 +2592,7 @@ def _align_series(self, other, join='outer', axis=None, level=None,
return left_result, right_result

def reindex(self, index=None, columns=None, method=None, level=None,
fill_value=NA, limit=None, copy=True):
fill_value=NA, limit=None, copy=True, takeable=False):
"""Conform DataFrame to new index with optional filling logic, placing
NA/NaN in locations having no value in the previous index. A new object
is produced unless the new index is equivalent to the current one and
Expand All @@ -2617,6 +2619,7 @@ def reindex(self, index=None, columns=None, method=None, level=None,
"compatible" value
limit : int, default None
Maximum size gap to forward or backward fill
takeable : the labels are locations (and not labels)

Examples
--------
Expand All @@ -2636,11 +2639,11 @@ def reindex(self, index=None, columns=None, method=None, level=None,

if columns is not None:
frame = frame._reindex_columns(columns, copy, level,
fill_value, limit)
fill_value, limit, takeable)

if index is not None:
frame = frame._reindex_index(index, method, copy, level,
fill_value, limit)
fill_value, limit, takeable)

return frame

Expand Down Expand Up @@ -2717,16 +2720,18 @@ def _reindex_multi(self, new_index, new_columns, copy, fill_value):
return self.copy() if copy else self

def _reindex_index(self, new_index, method, copy, level, fill_value=NA,
limit=None):
limit=None, takeable=False):
new_index, indexer = self.index.reindex(new_index, method, level,
limit=limit, copy_if_needed=True)
limit=limit, copy_if_needed=True,
takeable=takeable)
return self._reindex_with_indexers(new_index, indexer, None, None,
copy, fill_value)

def _reindex_columns(self, new_columns, copy, level, fill_value=NA,
limit=None):
limit=None, takeable=False):
new_columns, indexer = self.columns.reindex(new_columns, level=level,
limit=limit, copy_if_needed=True)
limit=limit, copy_if_needed=True,
takeable=takeable)
return self._reindex_with_indexers(None, None, new_columns, indexer,
copy, fill_value)

Expand Down
12 changes: 9 additions & 3 deletions pandas/core/index.py
Original file line number Diff line number Diff line change
Expand Up @@ -920,7 +920,8 @@ def _get_method(self, method):
}
return aliases.get(method, method)

def reindex(self, target, method=None, level=None, limit=None, copy_if_needed=False):
def reindex(self, target, method=None, level=None, limit=None,
copy_if_needed=False, takeable=False):
"""
For Index, simply returns the new index and the results of
get_indexer. Provided here to enable an interface that is amenable for
Expand Down Expand Up @@ -953,7 +954,11 @@ def reindex(self, target, method=None, level=None, limit=None, copy_if_needed=Fa
if method is not None or limit is not None:
raise ValueError("cannot reindex a non-unique index "
"with a method or limit")
indexer, missing = self.get_indexer_non_unique(target)
if takeable:
indexer = target
missing = (target>=len(target)).nonzero()[0]
else:
indexer, missing = self.get_indexer_non_unique(target)

return target, indexer

Expand Down Expand Up @@ -2202,7 +2207,8 @@ def get_indexer(self, target, method=None, limit=None):

return com._ensure_platform_int(indexer)

def reindex(self, target, method=None, level=None, limit=None, copy_if_needed=False):
def reindex(self, target, method=None, level=None, limit=None,
copy_if_needed=False, takeable=False):
"""
Performs any necessary conversion on the input index and calls
get_indexer. This method is here so MultiIndex and an Index of
Expand Down
17 changes: 14 additions & 3 deletions pandas/core/indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -476,10 +476,21 @@ def _reindex(keys, level=None):
cur_indexer = com._ensure_int64(l[check])

new_labels = np.empty(tuple([len(indexer)]),dtype=object)
new_labels[cur_indexer] = cur_labels
new_labels[missing_indexer] = missing_labels
new_labels[cur_indexer] = cur_labels
new_labels[missing_indexer] = missing_labels
new_indexer = (Index(cur_indexer) + Index(missing_indexer)).values
new_indexer[missing_indexer] = -1

result = result.reindex_axis(new_labels,axis=axis)
# need to reindex with an indexer on a specific axis
from pandas.core.frame import DataFrame
if not (type(self.obj) == DataFrame):
raise NotImplementedError("cannot handle non-unique indexing for non-DataFrame (yet)")

args = [None] * 4
args[2*axis] = new_labels
args[2*axis+1] = new_indexer

result = result._reindex_with_indexers(*args, copy=False, fill_value=np.nan)

return result

Expand Down
8 changes: 5 additions & 3 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -598,7 +598,7 @@ def _ixs(self, i, axis=0):
else:
label = self.index[i]
if isinstance(label, Index):
return self.reindex(label)
return self.reindex(label, takeable=True)
else:
return _index.get_value_at(self, i)

Expand Down Expand Up @@ -2618,7 +2618,7 @@ def _reindex_indexer(self, new_index, indexer, copy):
return self._constructor(new_values, new_index, name=self.name)

def reindex(self, index=None, method=None, level=None, fill_value=pa.NA,
limit=None, copy=True):
limit=None, copy=True, takeable=False):
"""Conform Series to new index with optional filling logic, placing
NA/NaN in locations having no value in the previous index. A new object
is produced unless the new index is equivalent to the current one and
Expand All @@ -2643,6 +2643,7 @@ def reindex(self, index=None, method=None, level=None, fill_value=pa.NA,
"compatible" value
limit : int, default None
Maximum size gap to forward or backward fill
takeable : the labels are locations (and not labels)

Returns
-------
Expand All @@ -2664,7 +2665,8 @@ def reindex(self, index=None, method=None, level=None, fill_value=pa.NA,
return Series(nan, index=index, name=self.name)

new_index, indexer = self.index.reindex(index, method=method,
level=level, limit=limit)
level=level, limit=limit,
takeable=takeable)
new_values = com.take_1d(self.values, indexer, fill_value=fill_value)
return Series(new_values, index=new_index, name=self.name)

Expand Down
33 changes: 22 additions & 11 deletions pandas/index.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -272,33 +272,44 @@ cdef class IndexEngine:
to the -1 indicies in the results """

cdef:
ndarray values
ndarray values, x
ndarray[int64_t] result, missing
object v, val
set stargets
dict d = {}
object val
int count = 0, count_missing = 0
Py_ssize_t i, j, n, found
Py_ssize_t i, j, n, n_t

self._ensure_mapping_populated()
values = self._get_index_values()
stargets = set(targets)
n = len(values)
n_t = len(targets)
result = np.empty(n+n_t, dtype=np.int64)
result = np.empty(n*n_t, dtype=np.int64)
missing = np.empty(n_t, dtype=np.int64)

# form the set of the results (like ismember)
members = np.empty(n, dtype=np.uint8)
for i in range(n):
val = util.get_value_1d(values, i)
if val in stargets:
if val not in d:
d[val] = []
d[val].append(i)

for i in range(n_t):
val = util.get_value_at(targets, i)
found = 0

for j in range(n):
v = util.get_value_at(values, j)
val = util.get_value_1d(targets, i)

if v == val:
# found
if val in d:
for j in d[val]:
result[count] = j
count += 1
found = 1

# value not found
if found == 0:
else:

result[count] = -1
count += 1
missing[count_missing] = i
Expand Down
5 changes: 3 additions & 2 deletions pandas/sparse/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -583,7 +583,7 @@ def _combine_const(self, other, func):
columns=self.columns)

def _reindex_index(self, index, method, copy, level, fill_value=np.nan,
limit=None):
limit=None, takeable=False):
if level is not None:
raise TypeError('Reindex by level not supported for sparse')

Expand Down Expand Up @@ -614,7 +614,8 @@ def _reindex_index(self, index, method, copy, level, fill_value=np.nan,
return SparseDataFrame(new_series, index=index, columns=self.columns,
default_fill_value=self.default_fill_value)

def _reindex_columns(self, columns, copy, level, fill_value, limit=None):
def _reindex_columns(self, columns, copy, level, fill_value, limit=None,
takeable=False):
if level is not None:
raise TypeError('Reindex by level not supported for sparse')

Expand Down
32 changes: 31 additions & 1 deletion pandas/tests/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
import numpy as np
from numpy.testing import assert_array_equal

import pandas as pan
import pandas as pd
import pandas.core.common as com
from pandas.core.api import (DataFrame, Index, Series, Panel, notnull, isnull,
MultiIndex, DatetimeIndex, Timestamp)
Expand Down Expand Up @@ -1037,6 +1037,36 @@ def test_loc_name(self):
result = df.loc[[0, 1]].index.name
self.assert_(result == 'index_name')

def test_iloc_non_unique_indexing(self):

#GH 4017, non-unique indexing (on the axis)
df = DataFrame({'A' : [0.1] * 3000, 'B' : [1] * 3000})
idx = np.array(range(30)) * 99
expected = df.iloc[idx]

df3 = pd.concat([df, 2*df, 3*df])
result = df3.iloc[idx]

assert_frame_equal(result, expected)

df2 = DataFrame({'A' : [0.1] * 1000, 'B' : [1] * 1000})
df2 = pd.concat([df2, 2*df2, 3*df2])

sidx = df2.index.to_series()
expected = df2.iloc[idx[idx<=sidx.max()]]

new_list = []
for r, s in expected.iterrows():
new_list.append(s)
new_list.append(s*2)
new_list.append(s*3)

expected = DataFrame(new_list)
expected = pd.concat([ expected, DataFrame(index=idx[idx>sidx.max()]) ])
result = df2.loc[idx]
assert_frame_equal(result, expected)


if __name__ == '__main__':
import nose
nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'],
Expand Down
16 changes: 16 additions & 0 deletions vb_suite/indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,3 +148,19 @@

indexing_panel_subset = Benchmark('p.ix[inds, inds, inds]', setup,
start_date=datetime(2012, 1, 1))

#----------------------------------------------------------------------
# Iloc

setup = common_setup + """
df = DataFrame({'A' : [0.1] * 3000, 'B' : [1] * 3000})
idx = np.array(range(30)) * 99
df2 = DataFrame({'A' : [0.1] * 1000, 'B' : [1] * 1000})
df2 = concat([df2, 2*df2, 3*df2])
"""

frame_iloc_dups = Benchmark('df2.iloc[idx]', setup,
start_date=datetime(2013, 1, 1))

frame_loc_dups = Benchmark('df2.loc[idx]', setup,
start_date=datetime(2013, 1, 1))