Skip to content

BUG: incorrectly accepting datetime64(nat) for dt64tz #39769

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions doc/source/whatsnew/v1.3.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -346,7 +346,9 @@ Indexing
- Bug in setting ``timedelta64`` or ``datetime64`` values into numeric :class:`Series` failing to cast to object dtype (:issue:`39086`, issue:`39619`)
- Bug in setting :class:`Interval` values into a :class:`Series` or :class:`DataFrame` with mismatched :class:`IntervalDtype` incorrectly casting the new values to the existing dtype (:issue:`39120`)
- Bug in setting ``datetime64`` values into a :class:`Series` with integer-dtype incorrect casting the datetime64 values to integers (:issue:`39266`)
- Bug in setting ``np.datetime64("NaT")`` into a :class:`Series` with :class:`Datetime64TZDtype` incorrectly treating the timezone-naive value as timezone-aware (:issue:`39769`)
- Bug in :meth:`Index.get_loc` not raising ``KeyError`` when method is specified for ``NaN`` value when ``NaN`` is not in :class:`Index` (:issue:`39382`)
- Bug in :meth:`DatetimeIndex.insert` when inserting ``np.datetime64("NaT")`` into a timezone-aware index incorrectly treating the timezone-naive value as timezone-aware (:issue:`39769`)
- Bug in incorrectly raising in :meth:`Index.insert`, when setting a new column that cannot be held in the existing ``frame.columns``, or in :meth:`Series.reset_index` or :meth:`DataFrame.reset_index` instead of casting to a compatible dtype (:issue:`39068`)
- Bug in :meth:`RangeIndex.append` where a single object of length 1 was concatenated incorrectly (:issue:`39401`)
- Bug in setting ``numpy.timedelta64`` values into an object-dtype :class:`Series` using a boolean indexer (:issue:`39488`)
Expand Down
6 changes: 6 additions & 0 deletions pandas/core/arrays/datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -562,6 +562,12 @@ def _validate_scalar(
# GH#18295
value = NaT

elif isna(value):
# if we are dt64tz and value is dt64("NaT"), dont cast to NaT,
# or else we'll fail to raise in _unbox_scalar
msg = self._validation_error_message(value, allow_listlike)
raise TypeError(msg)

elif isinstance(value, self._recognized_scalars):
# error: Too many arguments for "object" [call-arg]
value = self._scalar_type(value) # type: ignore[call-arg]
Expand Down
6 changes: 2 additions & 4 deletions pandas/core/arrays/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -464,10 +464,8 @@ def _generate_range(
def _unbox_scalar(self, value, setitem: bool = False) -> np.datetime64:
if not isinstance(value, self._scalar_type) and value is not NaT:
raise ValueError("'value' should be a Timestamp.")
if not isna(value):
self._check_compatible_with(value, setitem=setitem)
return value.asm8
return np.datetime64(value.value, "ns")
self._check_compatible_with(value, setitem=setitem)
return value.asm8

def _scalar_from_string(self, value):
return Timestamp(value, tz=self.tz)
Expand Down
9 changes: 7 additions & 2 deletions pandas/core/arrays/interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@

from pandas._config import get_option

from pandas._libs import NaT
from pandas._libs.interval import (
VALID_CLOSED,
Interval,
Expand All @@ -23,7 +24,8 @@
from pandas.core.dtypes.cast import maybe_convert_platform
from pandas.core.dtypes.common import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_datetime64_dtype,
is_datetime64tz_dtype,
is_dtype_equal,
is_float_dtype,
is_integer_dtype,
Expand Down Expand Up @@ -999,9 +1001,12 @@ def _validate_setitem_value(self, value):
if is_integer_dtype(self.dtype.subtype):
# can't set NaN on a numpy integer array
needs_float_conversion = True
elif is_datetime64_any_dtype(self.dtype.subtype):
elif is_datetime64_dtype(self.dtype.subtype):
# need proper NaT to set directly on the numpy array
value = np.datetime64("NaT")
elif is_datetime64tz_dtype(self.dtype.subtype):
# need proper NaT to set directly on the DatetimeArray array
value = NaT
elif is_timedelta64_dtype(self.dtype.subtype):
# need proper NaT to set directly on the numpy array
value = np.timedelta64("NaT")
Expand Down
6 changes: 5 additions & 1 deletion pandas/core/dtypes/missing.py
Original file line number Diff line number Diff line change
Expand Up @@ -604,7 +604,11 @@ def is_valid_na_for_dtype(obj, dtype: DtypeObj) -> bool:
if not lib.is_scalar(obj) or not isna(obj):
return False
if dtype.kind == "M":
return not isinstance(obj, np.timedelta64)
if isinstance(dtype, np.dtype):
# i.e. not tzaware
return not isinstance(obj, np.timedelta64)
# we have to rule out tznaive dt64("NaT")
return not isinstance(obj, (np.timedelta64, np.datetime64))
if dtype.kind == "m":
return not isinstance(obj, np.datetime64)
if dtype.kind in ["i", "u", "f", "c"]:
Expand Down
3 changes: 2 additions & 1 deletion pandas/core/internals/blocks.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@

from pandas._libs import (
Interval,
NaT,
Period,
Timestamp,
algos as libalgos,
Expand Down Expand Up @@ -2088,7 +2089,7 @@ class DatetimeTZBlock(ExtensionBlock, DatetimeBlock):
_can_hold_element = DatetimeBlock._can_hold_element
to_native_types = DatetimeBlock.to_native_types
diff = DatetimeBlock.diff
fill_value = np.datetime64("NaT", "ns")
fill_value = NaT
where = DatetimeBlock.where
putmask = DatetimeLikeBlockMixin.putmask

Expand Down
4 changes: 4 additions & 0 deletions pandas/tests/indexes/datetimes/test_insert.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,12 @@ class TestInsert:
@pytest.mark.parametrize("tz", [None, "UTC", "US/Eastern"])
def test_insert_nat(self, tz, null):
# GH#16537, GH#18295 (test missing)

idx = DatetimeIndex(["2017-01-01"], tz=tz)
expected = DatetimeIndex(["NaT", "2017-01-01"], tz=tz)
if tz is not None and isinstance(null, np.datetime64):
expected = Index([null, idx[0]], dtype=object)

res = idx.insert(0, null)
tm.assert_index_equal(res, expected)

Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/series/indexing/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -559,7 +559,7 @@ def test_dt64_series_assign_nat(nat_val, tz, indexer_sli):
base = Series(dti)
expected = Series([pd.NaT] + list(dti[1:]), dtype=dti.dtype)

should_cast = nat_val is pd.NaT or base.dtype.kind == nat_val.dtype.kind
should_cast = nat_val is pd.NaT or base.dtype == nat_val.dtype
if not should_cast:
expected = expected.astype(object)

Expand Down
37 changes: 37 additions & 0 deletions pandas/tests/series/indexing/test_setitem.py
Original file line number Diff line number Diff line change
Expand Up @@ -671,6 +671,43 @@ def key(self):
return 0


class TestSetitemNADatetime64Dtype(SetitemCastingEquivalents):
# some nat-like values should be cast to datetime64 when inserting
# into a datetime64 series. Others should coerce to object
# and retain their dtypes.

@pytest.fixture(params=[None, "UTC", "US/Central"])
def obj(self, request):
tz = request.param
dti = date_range("2016-01-01", periods=3, tz=tz)
return Series(dti)

@pytest.fixture(
params=[NaT, np.timedelta64("NaT", "ns"), np.datetime64("NaT", "ns")]
)
def val(self, request):
return request.param

@pytest.fixture
def is_inplace(self, val, obj):
if obj._values.tz is None:
# cast to object iff val is timedelta64("NaT")
return val is NaT or val.dtype.kind == "M"

# otherwise we have to exclude tznaive dt64("NaT")
return val is NaT

@pytest.fixture
def expected(self, obj, val, is_inplace):
dtype = obj.dtype if is_inplace else object
expected = Series([val] + list(obj[1:]), dtype=dtype)
return expected

@pytest.fixture
def key(self):
return 0


class TestSetitemMismatchedTZCastsToObject(SetitemCastingEquivalents):
# GH#24024
@pytest.fixture
Expand Down