Skip to content

Backport PR #39615: BUG: fix Categorical.astype for dtype=np.int32 argument #39676

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.2.2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ Fixed regressions
- Fixed regression in :meth:`~DataFrame.to_pickle` failing to create bz2/xz compressed pickle files with ``protocol=5`` (:issue:`39002`)
- Fixed regression in :func:`pandas.testing.assert_series_equal` and :func:`pandas.testing.assert_frame_equal` always raising ``AssertionError`` when comparing extension dtypes (:issue:`39410`)
- Fixed regression in :meth:`~DataFrame.to_csv` opening ``codecs.StreamWriter`` in binary mode instead of in text mode and ignoring user-provided ``mode`` (:issue:`39247`)
- Fixed regression in :meth:`Categorical.astype` casting to incorrect dtype when ``np.int32`` is passed to dtype argument (:issue:`39402`)
- Fixed regression in :meth:`~DataFrame.to_excel` creating corrupt files when appending (``mode="a"``) to an existing file (:issue:`39576`)
- Fixed regression in :meth:`DataFrame.transform` failing in case of an empty DataFrame or Series (:issue:`39636`)
- Fixed regression in :meth:`core.window.rolling.Rolling.count` where the ``min_periods`` argument would be set to ``0`` after the operation (:issue:`39554`)
Expand Down
26 changes: 26 additions & 0 deletions pandas/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -1188,6 +1188,32 @@ def any_nullable_int_dtype(request):
return request.param


@pytest.fixture(params=tm.ALL_INT_DTYPES + tm.ALL_EA_INT_DTYPES)
def any_int_or_nullable_int_dtype(request):
"""
Parameterized fixture for any nullable integer dtype.

* int
* 'int8'
* 'uint8'
* 'int16'
* 'uint16'
* 'int32'
* 'uint32'
* 'int64'
* 'uint64'
* 'UInt8'
* 'Int8'
* 'UInt16'
* 'Int16'
* 'UInt32'
* 'Int32'
* 'UInt64'
* 'Int64'
"""
return request.param


@pytest.fixture(params=tm.ALL_EA_INT_DTYPES + tm.FLOAT_EA_DTYPES)
def any_numeric_dtype(request):
"""
Expand Down
6 changes: 3 additions & 3 deletions pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -427,16 +427,16 @@ def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike:
else:
# GH8628 (PERF): astype category codes instead of astyping array
try:
astyped_cats = self.categories.astype(dtype=dtype, copy=copy)
new_cats = np.asarray(self.categories)
new_cats = new_cats.astype(dtype=dtype, copy=copy)
except (
TypeError, # downstream error msg for CategoricalIndex is misleading
ValueError,
):
msg = f"Cannot cast {self.categories.dtype} dtype to {dtype}"
raise ValueError(msg)

astyped_cats = extract_array(astyped_cats, extract_numpy=True)
result = take_1d(astyped_cats, libalgos.ensure_platform_int(self._codes))
result = take_1d(new_cats, libalgos.ensure_platform_int(self._codes))

return result

Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/arrays/categorical/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@ def test_astype(self, ordered):
tm.assert_numpy_array_equal(result, expected)

result = cat.astype(int)
expected = np.array(cat, dtype="int64")
expected = np.array(cat, dtype="int")
tm.assert_numpy_array_equal(result, expected)

result = cat.astype(float)
Expand Down
13 changes: 12 additions & 1 deletion pandas/tests/series/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ def test_astype_categorical_to_other(self):
exp = Series(["a", "b", "b", "a", "a", "c", "c", "c"])
tm.assert_series_equal(cat.astype("str"), exp)
s2 = Series(Categorical(["1", "2", "3", "4"]))
exp2 = Series([1, 2, 3, 4]).astype("int64")
exp2 = Series([1, 2, 3, 4]).astype("int")
tm.assert_series_equal(s2.astype("int"), exp2)

# object don't sort correctly, so just compare that we have the same
Expand Down Expand Up @@ -109,6 +109,17 @@ def test_astype_categorical_invalid_conversions(self):
with pytest.raises(TypeError, match=msg):
ser.astype("object").astype(Categorical)

def test_categorical_astype_to_int(self, any_int_or_nullable_int_dtype):
# GH 39402

df = DataFrame(data={"col1": pd.array([2.0, 1.0, 3.0])})
df.col1 = df.col1.astype("category")
df.col1 = df.col1.astype(any_int_or_nullable_int_dtype)
expected = DataFrame(
{"col1": pd.array([2, 1, 3], dtype=any_int_or_nullable_int_dtype)}
)
tm.assert_frame_equal(df, expected)

def test_series_to_categorical(self):
# see gh-16524: test conversion of Series to Categorical
series = Series(["a", "b", "c"])
Expand Down