Skip to content

API: CategoricalIndex.append fallback to concat_compat #38098

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Nov 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions doc/source/whatsnew/v1.2.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -454,6 +454,7 @@ Other API changes
- Passing an invalid ``fill_value`` to :meth:`Series.shift` with a ``CategoricalDtype`` now raises a ``TypeError`` instead of a ``ValueError`` (:issue:`37733`)
- Passing an invalid value to :meth:`IntervalIndex.insert` or :meth:`CategoricalIndex.insert` now raises a ``TypeError`` instead of a ``ValueError`` (:issue:`37733`)
- Attempting to reindex a Series with a :class:`CategoricalIndex` with an invalid ``fill_value`` now raises a ``TypeError`` instead of a ``ValueError`` (:issue:`37733`)
- :meth:`CategoricalIndex.append` with an index that contains non-category values will now cast instead of raising ``TypeError`` (:issue:`38098`)

.. ---------------------------------------------------------------------------

Expand Down Expand Up @@ -634,6 +635,7 @@ Indexing
- Bug in :meth:`DataFrame.loc` returning and assigning elements in wrong order when indexer is differently ordered than the :class:`MultiIndex` to filter (:issue:`31330`, :issue:`34603`)
- Bug in :meth:`DataFrame.loc` and :meth:`DataFrame.__getitem__` raising ``KeyError`` when columns were :class:`MultiIndex` with only one level (:issue:`29749`)
- Bug in :meth:`Series.__getitem__` and :meth:`DataFrame.__getitem__` raising blank ``KeyError`` without missing keys for :class:`IntervalIndex` (:issue:`27365`)
- Bug in setting a new label on a :class:`DataFrame` or :class:`Series` with a :class:`CategoricalIndex` incorrectly raising ``TypeError`` when the new label is not among the index's categories (:issue:`38098`)

Missing
^^^^^^^
Expand Down
6 changes: 0 additions & 6 deletions pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -4180,12 +4180,6 @@ def _coerce_scalar_to_index(self, item):

return Index([item], dtype=dtype, **self._get_attributes_dict())

def _to_safe_for_reshape(self):
"""
Convert to object if we are a categorical.
"""
return self

def _validate_fill_value(self, value):
"""
Check if the value can be inserted into our array, and convert
Expand Down
20 changes: 12 additions & 8 deletions pandas/core/indexes/category.py
Original file line number Diff line number Diff line change
Expand Up @@ -399,10 +399,6 @@ def unique(self, level=None):
# of result, not self.
return type(self)._simple_new(result, name=self.name)

def _to_safe_for_reshape(self):
""" convert to object if we are a categorical """
return self.astype("object")

def reindex(self, target, method=None, level=None, limit=None, tolerance=None):
"""
Create index with target's values (move/add/delete values as necessary)
Expand Down Expand Up @@ -637,11 +633,19 @@ def map(self, mapper):
mapped = self._values.map(mapper)
return Index(mapped, name=self.name)

def _concat(self, to_concat: List["Index"], name: Label) -> "CategoricalIndex":
def _concat(self, to_concat: List["Index"], name: Label) -> Index:
# if calling index is category, don't check dtype of others
codes = np.concatenate([self._is_dtype_compat(c).codes for c in to_concat])
cat = self._data._from_backing_data(codes)
return type(self)._simple_new(cat, name=name)
try:
codes = np.concatenate([self._is_dtype_compat(c).codes for c in to_concat])
except TypeError:
# not all to_concat elements are among our categories (or NA)
from pandas.core.dtypes.concat import concat_compat

res = concat_compat(to_concat)
return Index(res, name=name)
else:
cat = self._data._from_backing_data(codes)
return type(self)._simple_new(cat, name=name)

def _delegate_method(self, name: str, *args, **kwargs):
""" method delegation to the ._values """
Expand Down
4 changes: 0 additions & 4 deletions pandas/core/indexes/multi.py
Original file line number Diff line number Diff line change
Expand Up @@ -1684,10 +1684,6 @@ def unique(self, level=None):
level = self._get_level_number(level)
return self._get_level_values(level=level, unique=True)

def _to_safe_for_reshape(self):
""" convert to object if we are a categorical """
return self.set_levels([i._to_safe_for_reshape() for i in self.levels])

def to_frame(self, index=True, name=None):
"""
Create a DataFrame with the levels of the MultiIndex as columns.
Expand Down
31 changes: 8 additions & 23 deletions pandas/core/reshape/pivot.py
Original file line number Diff line number Diff line change
Expand Up @@ -268,19 +268,13 @@ def _add_margins(
margin_dummy = DataFrame(row_margin, columns=[key]).T

row_names = result.index.names
try:
# check the result column and leave floats
for dtype in set(result.dtypes):
cols = result.select_dtypes([dtype]).columns
margin_dummy[cols] = margin_dummy[cols].apply(
maybe_downcast_to_dtype, args=(dtype,)
)
result = result.append(margin_dummy)
except TypeError:

# we cannot reshape, so coerce the axis
result.index = result.index._to_safe_for_reshape()
result = result.append(margin_dummy)
# check the result column and leave floats
for dtype in set(result.dtypes):
cols = result.select_dtypes([dtype]).columns
margin_dummy[cols] = margin_dummy[cols].apply(
maybe_downcast_to_dtype, args=(dtype,)
)
result = result.append(margin_dummy)
result.index.names = row_names

return result
Expand Down Expand Up @@ -328,16 +322,7 @@ def _all_key(key):

# we are going to mutate this, so need to copy!
piece = piece.copy()
try:
piece[all_key] = margin[key]
except ValueError:
# we cannot reshape, so coerce the axis
piece.set_axis(
piece._get_axis(cat_axis)._to_safe_for_reshape(),
axis=cat_axis,
inplace=True,
)
piece[all_key] = margin[key]
piece[all_key] = margin[key]

table_pieces.append(piece)
margin_keys.append(all_key)
Expand Down
8 changes: 4 additions & 4 deletions pandas/tests/indexes/categorical/test_category.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,10 +57,10 @@ def test_append(self):
expected = CategoricalIndex(list("aabbcaca"), categories=categories)
tm.assert_index_equal(result, expected, exact=True)

# invalid objects
msg = "cannot append a non-category item to a CategoricalIndex"
with pytest.raises(TypeError, match=msg):
ci.append(Index(["a", "d"]))
# invalid objects -> cast to object via concat_compat
result = ci.append(Index(["a", "d"]))
expected = Index(["a", "a", "b", "b", "c", "a", "a", "d"])
tm.assert_index_equal(result, expected, exact=True)

# GH14298 - if base object is not categorical -> coerce to object
result = Index(["c", "a"]).append(ci)
Expand Down
9 changes: 6 additions & 3 deletions pandas/tests/indexing/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,9 +57,12 @@ def test_loc_scalar(self):
with pytest.raises(KeyError, match=r"^'d'$"):
df.loc["d"]

msg = "cannot append a non-category item to a CategoricalIndex"
with pytest.raises(TypeError, match=msg):
df.loc["d"] = 10
df2 = df.copy()
expected = df2.copy()
expected.index = expected.index.astype(object)
expected.loc["d"] = 10
df2.loc["d"] = 10
tm.assert_frame_equal(df2, expected)

msg = "'fill_value=d' is not present in this Categorical's categories"
with pytest.raises(TypeError, match=msg):
Expand Down
14 changes: 9 additions & 5 deletions pandas/tests/reshape/concat/test_categorical.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import numpy as np
import pytest

from pandas.core.dtypes.dtypes import CategoricalDtype

Expand Down Expand Up @@ -137,13 +136,18 @@ def test_categorical_index_preserver(self):
).set_index("B")
tm.assert_frame_equal(result, expected)

# wrong categories
# wrong categories -> uses concat_compat, which casts to object
df3 = DataFrame(
{"A": a, "B": Categorical(b, categories=list("abe"))}
).set_index("B")
msg = "categories must match existing categories when appending"
with pytest.raises(TypeError, match=msg):
pd.concat([df2, df3])
result = pd.concat([df2, df3])
expected = pd.concat(
[
df2.set_axis(df2.index.astype(object), 0),
df3.set_axis(df3.index.astype(object), 0),
]
)
tm.assert_frame_equal(result, expected)

def test_concat_categorical_tz(self):
# GH-23816
Expand Down