Skip to content

DOC: remove debug messages by adding semicolons #37206

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 18, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 28 additions & 28 deletions doc/source/user_guide/visualization.rst
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ On DataFrame, :meth:`~DataFrame.plot` is a convenience to plot all of the column

plt.figure();
@savefig frame_plot_basic.png
df.plot()
df.plot();

You can plot one column versus another using the ``x`` and ``y`` keywords in
:meth:`~DataFrame.plot`:
Expand Down Expand Up @@ -119,7 +119,7 @@ For example, a bar plot can be created the following way:
plt.figure();

@savefig bar_plot_ex.png
df.iloc[5].plot(kind="bar")
df.iloc[5].plot(kind="bar");

You can also create these other plots using the methods ``DataFrame.plot.<kind>`` instead of providing the ``kind`` keyword argument. This makes it easier to discover plot methods and the specific arguments they use:

Expand Down Expand Up @@ -180,7 +180,7 @@ bar plot:
df2 = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"])

@savefig bar_plot_multi_ex.png
df2.plot.bar()
df2.plot.bar();

To produce a stacked bar plot, pass ``stacked=True``:

Expand All @@ -193,7 +193,7 @@ To produce a stacked bar plot, pass ``stacked=True``:
.. ipython:: python

@savefig bar_plot_stacked_ex.png
df2.plot.bar(stacked=True)
df2.plot.bar(stacked=True);

To get horizontal bar plots, use the ``barh`` method:

Expand All @@ -206,7 +206,7 @@ To get horizontal bar plots, use the ``barh`` method:
.. ipython:: python

@savefig barh_plot_stacked_ex.png
df2.plot.barh(stacked=True)
df2.plot.barh(stacked=True);

.. _visualization.hist:

Expand Down Expand Up @@ -414,7 +414,7 @@ groupings. For instance,
df = pd.DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])
df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])

plt.figure()
plt.figure();

@savefig box_plot_ex2.png
bp = df.boxplot(by="X")
Expand Down Expand Up @@ -518,7 +518,7 @@ When input data contains ``NaN``, it will be automatically filled by 0. If you w
df = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"])

@savefig area_plot_stacked.png
df.plot.area()
df.plot.area();

To produce an unstacked plot, pass ``stacked=False``. Alpha value is set to 0.5 unless otherwise specified:

Expand All @@ -531,7 +531,7 @@ To produce an unstacked plot, pass ``stacked=False``. Alpha value is set to 0.5
.. ipython:: python

@savefig area_plot_unstacked.png
df.plot.area(stacked=False)
df.plot.area(stacked=False);

.. _visualization.scatter:

Expand All @@ -554,7 +554,7 @@ These can be specified by the ``x`` and ``y`` keywords.
df = pd.DataFrame(np.random.rand(50, 4), columns=["a", "b", "c", "d"])

@savefig scatter_plot.png
df.plot.scatter(x="a", y="b")
df.plot.scatter(x="a", y="b");

To plot multiple column groups in a single axes, repeat ``plot`` method specifying target ``ax``.
It is recommended to specify ``color`` and ``label`` keywords to distinguish each groups.
Expand All @@ -563,7 +563,7 @@ It is recommended to specify ``color`` and ``label`` keywords to distinguish eac

ax = df.plot.scatter(x="a", y="b", color="DarkBlue", label="Group 1")
@savefig scatter_plot_repeated.png
df.plot.scatter(x="c", y="d", color="DarkGreen", label="Group 2", ax=ax)
df.plot.scatter(x="c", y="d", color="DarkGreen", label="Group 2", ax=ax);

.. ipython:: python
:suppress:
Expand All @@ -576,7 +576,7 @@ each point:
.. ipython:: python

@savefig scatter_plot_colored.png
df.plot.scatter(x="a", y="b", c="c", s=50)
df.plot.scatter(x="a", y="b", c="c", s=50);


.. ipython:: python
Expand All @@ -591,7 +591,7 @@ bubble chart using a column of the ``DataFrame`` as the bubble size.
.. ipython:: python

@savefig scatter_plot_bubble.png
df.plot.scatter(x="a", y="b", s=df["c"] * 200)
df.plot.scatter(x="a", y="b", s=df["c"] * 200);

.. ipython:: python
:suppress:
Expand Down Expand Up @@ -837,7 +837,7 @@ You can create a scatter plot matrix using the
df = pd.DataFrame(np.random.randn(1000, 4), columns=["a", "b", "c", "d"])

@savefig scatter_matrix_kde.png
scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal="kde")
scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal="kde");

.. ipython:: python
:suppress:
Expand Down Expand Up @@ -1086,7 +1086,7 @@ layout and formatting of the returned plot:

plt.figure();
@savefig series_plot_basic2.png
ts.plot(style="k--", label="Series")
ts.plot(style="k--", label="Series");

.. ipython:: python
:suppress:
Expand Down Expand Up @@ -1144,7 +1144,7 @@ it empty for ylabel.
df.plot();

@savefig plot_xlabel_ylabel.png
df.plot(xlabel="new x", ylabel="new y")
df.plot(xlabel="new x", ylabel="new y");

.. ipython:: python
:suppress:
Expand Down Expand Up @@ -1320,7 +1320,7 @@ with the ``subplots`` keyword:
.. ipython:: python

@savefig frame_plot_subplots.png
df.plot(subplots=True, figsize=(6, 6))
df.plot(subplots=True, figsize=(6, 6));

.. ipython:: python
:suppress:
Expand All @@ -1343,7 +1343,7 @@ or columns needed, given the other.
.. ipython:: python

@savefig frame_plot_subplots_layout.png
df.plot(subplots=True, layout=(2, 3), figsize=(6, 6), sharex=False)
df.plot(subplots=True, layout=(2, 3), figsize=(6, 6), sharex=False);

.. ipython:: python
:suppress:
Expand All @@ -1354,7 +1354,7 @@ The above example is identical to using:

.. ipython:: python

df.plot(subplots=True, layout=(2, -1), figsize=(6, 6), sharex=False)
df.plot(subplots=True, layout=(2, -1), figsize=(6, 6), sharex=False);

.. ipython:: python
:suppress:
Expand All @@ -1379,9 +1379,9 @@ otherwise you will see a warning.
target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]]
target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]]

df.plot(subplots=True, ax=target1, legend=False, sharex=False, sharey=False)
df.plot(subplots=True, ax=target1, legend=False, sharex=False, sharey=False);
@savefig frame_plot_subplots_multi_ax.png
(-df).plot(subplots=True, ax=target2, legend=False, sharex=False, sharey=False)
(-df).plot(subplots=True, ax=target2, legend=False, sharex=False, sharey=False);

.. ipython:: python
:suppress:
Expand Down Expand Up @@ -1409,15 +1409,15 @@ Another option is passing an ``ax`` argument to :meth:`Series.plot` to plot on a

fig, axes = plt.subplots(nrows=2, ncols=2)
plt.subplots_adjust(wspace=0.2, hspace=0.5)
df["A"].plot(ax=axes[0, 0])
axes[0, 0].set_title("A")
df["B"].plot(ax=axes[0, 1])
axes[0, 1].set_title("B")
df["C"].plot(ax=axes[1, 0])
axes[1, 0].set_title("C")
df["D"].plot(ax=axes[1, 1])
df["A"].plot(ax=axes[0, 0]);
axes[0, 0].set_title("A");
df["B"].plot(ax=axes[0, 1]);
axes[0, 1].set_title("B");
df["C"].plot(ax=axes[1, 0]);
axes[1, 0].set_title("C");
df["D"].plot(ax=axes[1, 1]);
@savefig series_plot_multi.png
axes[1, 1].set_title("D")
axes[1, 1].set_title("D");

.. ipython:: python
:suppress:
Expand Down