Skip to content

CLN: cleanups in DataFrame._reduce #36674

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 2, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 20 additions & 30 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -638,10 +638,10 @@ def _can_fast_transpose(self) -> bool:
"""
Can we transpose this DataFrame without creating any new array objects.
"""
if self._data.any_extension_types:
if self._mgr.any_extension_types:
# TODO(EA2D) special case would be unnecessary with 2D EAs
return False
return len(self._data.blocks) == 1
return len(self._mgr.blocks) == 1

# ----------------------------------------------------------------------
# Rendering Methods
Expand Down Expand Up @@ -2872,7 +2872,7 @@ def _get_column_array(self, i: int) -> ArrayLike:
Get the values of the i'th column (ndarray or ExtensionArray, as stored
in the Block)
"""
return self._data.iget_values(i)
return self._mgr.iget_values(i)

def _iter_column_arrays(self) -> Iterator[ArrayLike]:
"""
Expand Down Expand Up @@ -4904,7 +4904,7 @@ def _maybe_casted_values(index, labels=None):

@doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"])
def isna(self) -> DataFrame:
result = self._constructor(self._data.isna(func=isna))
result = self._constructor(self._mgr.isna(func=isna))
return result.__finalize__(self, method="isna")

@doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"])
Expand Down Expand Up @@ -8568,6 +8568,7 @@ def _reduce(
):

assert filter_type is None or filter_type == "bool", filter_type
out_dtype = "bool" if filter_type == "bool" else None

dtype_is_dt = np.array(
[
Expand All @@ -8587,10 +8588,9 @@ def _reduce(
cols = self.columns[~dtype_is_dt]
self = self[cols]

# TODO: Make other agg func handle axis=None properly
# TODO: Make other agg func handle axis=None properly GH#21597
axis = self._get_axis_number(axis)
labels = self._get_agg_axis(axis)
constructor = self._constructor
assert axis in [0, 1]

def func(values):
Expand All @@ -8599,18 +8599,19 @@ def func(values):
else:
return op(values, axis=axis, skipna=skipna, **kwds)

def blk_func(values):
if isinstance(values, ExtensionArray):
return values._reduce(name, skipna=skipna, **kwds)
else:
return op(values, axis=1, skipna=skipna, **kwds)

def _get_data() -> DataFrame:
if filter_type is None:
data = self._get_numeric_data()
elif filter_type == "bool":
else:
# GH#25101, GH#24434
assert filter_type == "bool"
data = self._get_bool_data()
else: # pragma: no cover
msg = (
f"Generating numeric_only data with filter_type {filter_type} "
"not supported."
)
raise NotImplementedError(msg)
return data

if numeric_only is not None:
Expand All @@ -8621,14 +8622,6 @@ def _get_data() -> DataFrame:
df = df.T
axis = 0

out_dtype = "bool" if filter_type == "bool" else None

def blk_func(values):
if isinstance(values, ExtensionArray):
return values._reduce(name, skipna=skipna, **kwds)
else:
return op(values, axis=1, skipna=skipna, **kwds)

# After possibly _get_data and transposing, we are now in the
# simple case where we can use BlockManager.reduce
res = df._mgr.reduce(blk_func)
Expand All @@ -8644,11 +8637,10 @@ def blk_func(values):
if not self._is_homogeneous_type or self._mgr.any_extension_types:
# try to avoid self.values call

if filter_type is None and axis == 0 and len(self) > 0:
if filter_type is None and axis == 0:
# operate column-wise

# numeric_only must be None here, as other cases caught above
# require len(self) > 0 bc frame_apply messes up empty prod/sum

# this can end up with a non-reduction
# but not always. if the types are mixed
Expand Down Expand Up @@ -8684,19 +8676,17 @@ def blk_func(values):
with np.errstate(all="ignore"):
result = func(values)

if is_object_dtype(result.dtype):
if filter_type == "bool" and notna(result).all():
result = result.astype(np.bool_)
elif filter_type is None and is_object_dtype(result.dtype):
try:
if filter_type is None:
result = result.astype(np.float64)
elif filter_type == "bool" and notna(result).all():
result = result.astype(np.bool_)
result = result.astype(np.float64)
except (ValueError, TypeError):
# try to coerce to the original dtypes item by item if we can
if axis == 0:
result = coerce_to_dtypes(result, data.dtypes)

if constructor is not None:
result = self._constructor_sliced(result, index=labels)
result = self._constructor_sliced(result, index=labels)
return result

def nunique(self, axis=0, dropna=True) -> Series:
Expand Down