Skip to content

Support mrecarrays in DataFrame constructor #3479

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 14 additions & 12 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -392,24 +392,15 @@ def __init__(self, data=None, index=None, columns=None, dtype=None,
mgr = self._init_mgr(data, index, columns, dtype=dtype, copy=copy)
elif isinstance(data, dict):
mgr = self._init_dict(data, index, columns, dtype=dtype)
elif isinstance(data, ma.MaskedArray):
mask = ma.getmaskarray(data)
if mask.any():
data, fill_value = _maybe_upcast(data, copy=True)
data[mask] = fill_value
else:
data = data.copy()
mgr = self._init_ndarray(data, index, columns, dtype=dtype,
copy=copy)
elif isinstance(data, np.ndarray):
if data.dtype.names:
data_columns, data = _rec_to_dict(data)
if columns is None:
columns = data_columns
mgr = self._init_dict(data, index, columns, dtype=dtype)
else:
mgr = self._init_ndarray(data, index, columns, dtype=dtype,
copy=copy)
mgr = self._init_ndarray(_unmask(data), index, columns,
dtype=dtype, copy=copy)
elif isinstance(data, list):
if len(data) > 0:
if index is None and isinstance(data[0], Series):
Expand Down Expand Up @@ -5424,10 +5415,21 @@ def convert(v):
return values


def _unmask(arr):
if isinstance(arr, ma.MaskedArray):
mask = ma.getmaskarray(arr)
if mask.any():
arr, fill_value = _maybe_upcast(arr, copy=True)
arr[mask] = fill_value
return arr.copy()
return arr.copy()
return arr


def _rec_to_dict(arr):
if isinstance(arr, np.ndarray):
columns = list(arr.dtype.names)
sdict = dict((k, arr[k]) for k in columns)
sdict = dict((k, _unmask(arr[k])) for k in columns)
elif isinstance(arr, DataFrame):
columns = list(arr.columns)
sdict = dict((k, v.values) for k, v in arr.iteritems())
Expand Down
36 changes: 36 additions & 0 deletions pandas/tests/test_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@
from datetime import datetime, timedelta, time
from StringIO import StringIO
import cPickle as pickle
import functools
import itertools
import operator
import os
import unittest
Expand All @@ -13,6 +15,7 @@
from numpy.random import randn
import numpy as np
import numpy.ma as ma
import numpy.ma.mrecords as mrecords
from numpy.testing import assert_array_equal

import pandas as pan
Expand Down Expand Up @@ -2491,6 +2494,39 @@ def test_constructor_maskedarray_nonfloat(self):
self.assertEqual(True, frame['A'][1])
self.assertEqual(False, frame['C'][2])

def test_constructor_mrecarray(self):
"""Ensure mrecarray produces frame identical to dict of masked arrays
"""
assert_fr_equal = functools.partial(assert_frame_equal,
check_index_type=True,
check_column_type=True,
check_frame_type=True)
arrays = [
('float', np.array([1.5, 2.0])),
('int', np.array([1, 2])),
('str', np.array(['abc', 'def'])),
]
for name, arr in arrays[:]:
arrays.append(('masked1_' + name,
np.ma.masked_array(arr, mask=[False, True])))
arrays.append(('masked_all', np.ma.masked_all((2,))))
arrays.append(('masked_none',
np.ma.masked_array([1.0, 2.5], mask=False)))

# call assert_frame_equal for all selections of 3 arrays
for comb in itertools.combinations(arrays, 3):
names, data = zip(*comb)
print(names)
mrecs = mrecords.fromarrays(data, names=names)
assert_fr_equal(DataFrame(mrecs),
DataFrame(dict(comb), columns=names))
# specify columns
assert_fr_equal(DataFrame(mrecs, columns=names[::-1]),
DataFrame(dict(comb), columns=names[::-1]))
# specify index
assert_fr_equal(DataFrame(mrecs, index=[1, 2]),
DataFrame(dict(comb), columns=names, index=[1,2]))

def test_constructor_corner(self):
df = DataFrame(index=[])
self.assertEqual(df.values.shape, (0, 0))
Expand Down