Skip to content

Backport PR #34053 on branch 1.0.x (more informative error message with np.min or np.max on unordered Categorical) #34246

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
May 19, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.0.4.rst
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ Fixed regressions
- Fix regression in :meth:`DataFrame.describe` raising ``TypeError: unhashable type: 'dict'`` (:issue:`32409`)
- Bug in :meth:`DataFrame.replace` casts columns to ``object`` dtype if items in ``to_replace`` not in values (:issue:`32988`)
- Bug in :meth:`GroupBy.rolling.apply` ignores args and kwargs parameters (:issue:`33433`)
- More informative error message with ``np.min`` or ``np.max`` on unordered :class:`Categorical` (:issue:`33115`)
-

.. _whatsnew_104.bug_fixes:
Expand Down
2 changes: 1 addition & 1 deletion pandas/compat/numpy/function.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,7 @@ def validate_cum_func_with_skipna(skipna, args, kwargs, name):
LOGICAL_FUNC_DEFAULTS = dict(out=None, keepdims=False)
validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method="kwargs")

MINMAX_DEFAULTS = dict(out=None, keepdims=False)
MINMAX_DEFAULTS = dict(axis=None, out=None, keepdims=False)
validate_min = CompatValidator(
MINMAX_DEFAULTS, fname="min", method="both", max_fname_arg_count=1
)
Expand Down
6 changes: 4 additions & 2 deletions pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -2125,7 +2125,7 @@ def _reduce(self, name, axis=0, **kwargs):
return func(**kwargs)

@deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna")
def min(self, skipna=True):
def min(self, skipna=True, **kwargs):
"""
The minimum value of the object.

Expand All @@ -2144,6 +2144,7 @@ def min(self, skipna=True):
-------
min : the minimum of this `Categorical`
"""
nv.validate_min((), kwargs)
self.check_for_ordered("min")

if not len(self._codes):
Expand All @@ -2160,7 +2161,7 @@ def min(self, skipna=True):
return self.categories[pointer]

@deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna")
def max(self, skipna=True):
def max(self, skipna=True, **kwargs):
"""
The maximum value of the object.

Expand All @@ -2179,6 +2180,7 @@ def max(self, skipna=True):
-------
max : the maximum of this `Categorical`
"""
nv.validate_max((), kwargs)
self.check_for_ordered("max")

if not len(self._codes):
Expand Down
32 changes: 32 additions & 0 deletions pandas/tests/arrays/categorical/test_analytics.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import re
import sys

import numpy as np
Expand Down Expand Up @@ -105,6 +106,37 @@ def test_deprecate_numeric_only_min_max(self, method):
with tm.assert_produces_warning(expected_warning=FutureWarning):
getattr(cat, method)(numeric_only=True)

@pytest.mark.parametrize("method", ["min", "max"])
def test_numpy_min_max_raises(self, method):
cat = Categorical(["a", "b", "c", "b"], ordered=False)
msg = (
f"Categorical is not ordered for operation {method}\n"
"you can use .as_ordered() to change the Categorical to an ordered one"
)
method = getattr(np, method)
with pytest.raises(TypeError, match=re.escape(msg)):
method(cat)

@pytest.mark.parametrize("kwarg", ["axis", "out", "keepdims"])
@pytest.mark.parametrize("method", ["min", "max"])
def test_numpy_min_max_unsupported_kwargs_raises(self, method, kwarg):
cat = Categorical(["a", "b", "c", "b"], ordered=True)
msg = (
f"the '{kwarg}' parameter is not supported in the pandas implementation "
f"of {method}"
)
kwargs = {kwarg: 42}
method = getattr(np, method)
with pytest.raises(ValueError, match=msg):
method(cat, **kwargs)

@pytest.mark.parametrize("method, expected", [("min", "a"), ("max", "c")])
def test_numpy_min_max_axis_equals_none(self, method, expected):
cat = Categorical(["a", "b", "c", "b"], ordered=True)
method = getattr(np, method)
result = method(cat, axis=None)
assert result == expected

@pytest.mark.parametrize(
"values,categories,exp_mode",
[
Expand Down