Skip to content

PERF: use fast-paths for dtype checks #34118

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 11, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions pandas/core/arrays/interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,9 +149,16 @@ class IntervalArray(IntervalMixin, ExtensionArray):
can_hold_na = True
_na_value = _fill_value = np.nan

def __new__(cls, data, closed=None, dtype=None, copy=False, verify_integrity=True):
def __new__(
cls,
data,
closed=None,
dtype=None,
copy: bool = False,
verify_integrity: bool = True,
):

if isinstance(data, ABCSeries) and is_interval_dtype(data):
if isinstance(data, ABCSeries) and is_interval_dtype(data.dtype):
data = data._values

if isinstance(data, (cls, ABCIntervalIndex)):
Expand Down Expand Up @@ -569,8 +576,8 @@ def __eq__(self, other):

# determine the dtype of the elements we want to compare
if isinstance(other, Interval):
other_dtype = "interval"
elif not is_categorical_dtype(other):
other_dtype = pandas_dtype("interval")
elif not is_categorical_dtype(other.dtype):
other_dtype = other.dtype
else:
# for categorical defer to categories for dtype
Expand Down Expand Up @@ -674,7 +681,8 @@ def astype(self, dtype, copy=True):
array : ExtensionArray or ndarray
ExtensionArray or NumPy ndarray with 'dtype' for its dtype.
"""
dtype = pandas_dtype(dtype)
if dtype is not None:
dtype = pandas_dtype(dtype)
if is_interval_dtype(dtype):
if dtype == self.dtype:
return self.copy() if copy else self
Expand Down
2 changes: 1 addition & 1 deletion pandas/core/indexes/interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -410,7 +410,7 @@ def __reduce__(self):
def astype(self, dtype, copy=True):
with rewrite_exception("IntervalArray", type(self).__name__):
new_values = self._values.astype(dtype, copy=copy)
if is_interval_dtype(new_values):
if is_interval_dtype(new_values.dtype):
return self._shallow_copy(new_values)
return Index.astype(self, dtype, copy=copy)

Expand Down
34 changes: 19 additions & 15 deletions pandas/core/reshape/merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -1079,10 +1079,10 @@ def _maybe_coerce_merge_keys(self):
if (len(lk) and not len(rk)) or (not len(lk) and len(rk)):
continue

lk_is_cat = is_categorical_dtype(lk)
rk_is_cat = is_categorical_dtype(rk)
lk_is_object = is_object_dtype(lk)
rk_is_object = is_object_dtype(rk)
lk_is_cat = is_categorical_dtype(lk.dtype)
rk_is_cat = is_categorical_dtype(rk.dtype)
lk_is_object = is_object_dtype(lk.dtype)
rk_is_object = is_object_dtype(rk.dtype)

# if either left or right is a categorical
# then the must match exactly in categories & ordered
Expand All @@ -1105,12 +1105,12 @@ def _maybe_coerce_merge_keys(self):
# kinds to proceed, eg. int64 and int8, int and float
# further if we are object, but we infer to
# the same, then proceed
if is_numeric_dtype(lk) and is_numeric_dtype(rk):
if is_numeric_dtype(lk.dtype) and is_numeric_dtype(rk.dtype):
if lk.dtype.kind == rk.dtype.kind:
continue

# check whether ints and floats
elif is_integer_dtype(rk) and is_float_dtype(lk):
elif is_integer_dtype(rk.dtype) and is_float_dtype(lk.dtype):
if not (lk == lk.astype(rk.dtype))[~np.isnan(lk)].all():
warnings.warn(
"You are merging on int and float "
Expand All @@ -1120,7 +1120,7 @@ def _maybe_coerce_merge_keys(self):
)
continue

elif is_float_dtype(rk) and is_integer_dtype(lk):
elif is_float_dtype(rk.dtype) and is_integer_dtype(lk.dtype):
if not (rk == rk.astype(lk.dtype))[~np.isnan(rk)].all():
warnings.warn(
"You are merging on int and float "
Expand All @@ -1140,14 +1140,14 @@ def _maybe_coerce_merge_keys(self):
# incompatible dtypes GH 9780, GH 15800

# bool values are coerced to object
elif (lk_is_object and is_bool_dtype(rk)) or (
is_bool_dtype(lk) and rk_is_object
elif (lk_is_object and is_bool_dtype(rk.dtype)) or (
is_bool_dtype(lk.dtype) and rk_is_object
):
pass

# object values are allowed to be merged
elif (lk_is_object and is_numeric_dtype(rk)) or (
is_numeric_dtype(lk) and rk_is_object
elif (lk_is_object and is_numeric_dtype(rk.dtype)) or (
is_numeric_dtype(lk.dtype) and rk_is_object
):
inferred_left = lib.infer_dtype(lk, skipna=False)
inferred_right = lib.infer_dtype(rk, skipna=False)
Expand All @@ -1167,13 +1167,17 @@ def _maybe_coerce_merge_keys(self):
raise ValueError(msg)

# datetimelikes must match exactly
elif needs_i8_conversion(lk) and not needs_i8_conversion(rk):
elif needs_i8_conversion(lk.dtype) and not needs_i8_conversion(rk.dtype):
raise ValueError(msg)
elif not needs_i8_conversion(lk) and needs_i8_conversion(rk):
elif not needs_i8_conversion(lk.dtype) and needs_i8_conversion(rk.dtype):
raise ValueError(msg)
elif is_datetime64tz_dtype(lk) and not is_datetime64tz_dtype(rk):
elif is_datetime64tz_dtype(lk.dtype) and not is_datetime64tz_dtype(
rk.dtype
):
raise ValueError(msg)
elif not is_datetime64tz_dtype(lk) and is_datetime64tz_dtype(rk):
elif not is_datetime64tz_dtype(lk.dtype) and is_datetime64tz_dtype(
rk.dtype
):
raise ValueError(msg)

elif lk_is_object and rk_is_object:
Expand Down
10 changes: 5 additions & 5 deletions pandas/core/reshape/tile.py
Original file line number Diff line number Diff line change
Expand Up @@ -461,22 +461,22 @@ def _coerce_to_type(x):
"""
dtype = None

if is_datetime64tz_dtype(x):
if is_datetime64tz_dtype(x.dtype):
dtype = x.dtype
elif is_datetime64_dtype(x):
elif is_datetime64_dtype(x.dtype):
x = to_datetime(x)
dtype = np.dtype("datetime64[ns]")
elif is_timedelta64_dtype(x):
elif is_timedelta64_dtype(x.dtype):
x = to_timedelta(x)
dtype = np.dtype("timedelta64[ns]")
elif is_bool_dtype(x):
elif is_bool_dtype(x.dtype):
# GH 20303
x = x.astype(np.int64)
# To support cut and qcut for IntegerArray we convert to float dtype.
# Will properly support in the future.
# https://github.com/pandas-dev/pandas/pull/31290
# https://github.com/pandas-dev/pandas/issues/31389
elif is_extension_array_dtype(x) and is_integer_dtype(x):
elif is_extension_array_dtype(x.dtype) and is_integer_dtype(x.dtype):
x = x.to_numpy(dtype=np.float64, na_value=np.nan)

if dtype is not None:
Expand Down