Skip to content

CLN: Parametrize dtype inference tests #33753

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 23, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 52 additions & 54 deletions pandas/tests/dtypes/test_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -354,71 +354,69 @@ def test_is_recompilable_fails(ll):


class TestInference:
def test_infer_dtype_bytes(self):
compare = "bytes"

# string array of bytes
arr = np.array(list("abc"), dtype="S1")
assert lib.infer_dtype(arr, skipna=True) == compare
@pytest.mark.parametrize(
"arr",
[
np.array(list("abc"), dtype="S1"),
np.array(list("abc"), dtype="S1").astype(object),
[b"a", np.nan, b"c"],
],
)
def test_infer_dtype_bytes(self, arr):
result = lib.infer_dtype(arr, skipna=True)
assert result == "bytes"

# object array of bytes
arr = arr.astype(object)
assert lib.infer_dtype(arr, skipna=True) == compare
@pytest.mark.parametrize(
"value, expected",
[
(float("inf"), True),
(np.inf, True),
(-np.inf, False),
(1, False),
("a", False),
],
)
def test_isposinf_scalar(self, value, expected):
# GH 11352
result = libmissing.isposinf_scalar(value)
assert result is expected

# object array of bytes with missing values
assert lib.infer_dtype([b"a", np.nan, b"c"], skipna=True) == compare
@pytest.mark.parametrize(
"value, expected",
[
(float("-inf"), True),
(-np.inf, True),
(np.inf, False),
(1, False),
("a", False),
],
)
def test_isneginf_scalar(self, value, expected):
result = libmissing.isneginf_scalar(value)
assert result is expected

def test_isinf_scalar(self):
# GH 11352
assert libmissing.isposinf_scalar(float("inf"))
assert libmissing.isposinf_scalar(np.inf)
assert not libmissing.isposinf_scalar(-np.inf)
assert not libmissing.isposinf_scalar(1)
assert not libmissing.isposinf_scalar("a")

assert libmissing.isneginf_scalar(float("-inf"))
assert libmissing.isneginf_scalar(-np.inf)
assert not libmissing.isneginf_scalar(np.inf)
assert not libmissing.isneginf_scalar(1)
assert not libmissing.isneginf_scalar("a")

@pytest.mark.parametrize("maybe_int", [True, False])
@pytest.mark.parametrize("coerce_numeric", [True, False])
@pytest.mark.parametrize(
"infinity", ["inf", "inF", "iNf", "Inf", "iNF", "InF", "INf", "INF"]
)
def test_maybe_convert_numeric_infinities(self, infinity, maybe_int):
@pytest.mark.parametrize("prefix", ["", "-", "+"])
def test_maybe_convert_numeric_infinities(self, coerce_numeric, infinity, prefix):
# see gh-13274
na_values = {"", "NULL", "nan"}

pos = np.array(["inf"], dtype=np.float64)
neg = np.array(["-inf"], dtype=np.float64)

msg = "Unable to parse string"

out = lib.maybe_convert_numeric(
np.array([infinity], dtype=object), na_values, maybe_int
)
tm.assert_numpy_array_equal(out, pos)

out = lib.maybe_convert_numeric(
np.array(["-" + infinity], dtype=object), na_values, maybe_int
)
tm.assert_numpy_array_equal(out, neg)

out = lib.maybe_convert_numeric(
np.array([infinity], dtype=object), na_values, maybe_int
)
tm.assert_numpy_array_equal(out, pos)

out = lib.maybe_convert_numeric(
np.array(["+" + infinity], dtype=object), na_values, maybe_int
result = lib.maybe_convert_numeric(
np.array([prefix + infinity], dtype=object),
na_values={"", "NULL", "nan"},
coerce_numeric=coerce_numeric,
)
tm.assert_numpy_array_equal(out, pos)
expected = np.array([np.inf if prefix in ["", "+"] else -np.inf])
tm.assert_numpy_array_equal(result, expected)

# too many characters
def test_maybe_convert_numeric_infinities_raises(self):
msg = "Unable to parse string"
with pytest.raises(ValueError, match=msg):
lib.maybe_convert_numeric(
np.array(["foo_" + infinity], dtype=object), na_values, maybe_int
np.array(["foo_inf"], dtype=object),
na_values={"", "NULL", "nan"},
coerce_numeric=False,
)

def test_maybe_convert_numeric_post_floatify_nan(self, coerce):
Expand Down