Skip to content

TST: make expected DTI/TDI results more specific #33609

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 17, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 17 additions & 9 deletions pandas/tests/indexes/datetimes/test_misc.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@ def test_range_edges(self):
"1970-01-01 00:00:00.000000002",
"1970-01-01 00:00:00.000000003",
"1970-01-01 00:00:00.000000004",
]
],
freq="N",
)
tm.assert_index_equal(idx, exp)

Expand All @@ -34,15 +35,15 @@ def test_range_edges(self):
end=Timestamp("1970-01-01 00:00:00.000000001"),
freq="N",
)
exp = DatetimeIndex([])
exp = DatetimeIndex([], freq="N")
tm.assert_index_equal(idx, exp)

idx = pd.date_range(
start=Timestamp("1970-01-01 00:00:00.000000001"),
end=Timestamp("1970-01-01 00:00:00.000000001"),
freq="N",
)
exp = DatetimeIndex(["1970-01-01 00:00:00.000000001"])
exp = DatetimeIndex(["1970-01-01 00:00:00.000000001"], freq="N")
tm.assert_index_equal(idx, exp)

idx = pd.date_range(
Expand All @@ -56,7 +57,8 @@ def test_range_edges(self):
"1970-01-01 00:00:00.000002",
"1970-01-01 00:00:00.000003",
"1970-01-01 00:00:00.000004",
]
],
freq="U",
)
tm.assert_index_equal(idx, exp)

Expand All @@ -71,7 +73,8 @@ def test_range_edges(self):
"1970-01-01 00:00:00.002",
"1970-01-01 00:00:00.003",
"1970-01-01 00:00:00.004",
]
],
freq="L",
)
tm.assert_index_equal(idx, exp)

Expand All @@ -86,7 +89,8 @@ def test_range_edges(self):
"1970-01-01 00:00:02",
"1970-01-01 00:00:03",
"1970-01-01 00:00:04",
]
],
freq="S",
)
tm.assert_index_equal(idx, exp)

Expand All @@ -101,7 +105,8 @@ def test_range_edges(self):
"1970-01-01 00:02",
"1970-01-01 00:03",
"1970-01-01 00:04",
]
],
freq="T",
)
tm.assert_index_equal(idx, exp)

Expand All @@ -116,14 +121,17 @@ def test_range_edges(self):
"1970-01-01 02:00",
"1970-01-01 03:00",
"1970-01-01 04:00",
]
],
freq="H",
)
tm.assert_index_equal(idx, exp)

idx = pd.date_range(
start=Timestamp("1970-01-01"), end=Timestamp("1970-01-04"), freq="D"
)
exp = DatetimeIndex(["1970-01-01", "1970-01-02", "1970-01-03", "1970-01-04"])
exp = DatetimeIndex(
["1970-01-01", "1970-01-02", "1970-01-03", "1970-01-04"], freq="D"
)
tm.assert_index_equal(idx, exp)


Expand Down
14 changes: 9 additions & 5 deletions pandas/tests/indexes/datetimes/test_partial_slicing.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,11 @@ def test_slice_with_negative_step(self):
SLC = pd.IndexSlice

def assert_slices_equivalent(l_slc, i_slc):
tm.assert_series_equal(ts[l_slc], ts.iloc[i_slc])
tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
expected = ts.iloc[i_slc]

tm.assert_series_equal(ts[l_slc], expected)
tm.assert_series_equal(ts.loc[l_slc], expected)
tm.assert_series_equal(ts.loc[l_slc], expected)

assert_slices_equivalent(SLC[Timestamp("2014-10-01") :: -1], SLC[9::-1])
assert_slices_equivalent(SLC["2014-10-01"::-1], SLC[9::-1])
Expand All @@ -47,7 +49,7 @@ def assert_slices_equivalent(l_slc, i_slc):
SLC[Timestamp("2015-02-01") : "2014-10-01" : -1], SLC[13:8:-1]
)

assert_slices_equivalent(SLC["2014-10-01":"2015-02-01":-1], SLC[:0])
assert_slices_equivalent(SLC["2014-10-01":"2015-02-01":-1], SLC[0:0:-1])

def test_slice_with_zero_step_raises(self):
ts = Series(np.arange(20), date_range("2014-01-01", periods=20, freq="MS"))
Expand Down Expand Up @@ -79,7 +81,9 @@ def test_monotone_DTI_indexing_bug(self):
df = pd.DataFrame(
{"A": [1, 2, 3]}, index=pd.date_range("20170101", periods=3)[::-1]
)
expected = pd.DataFrame({"A": 1}, index=pd.date_range("20170103", periods=1))
expected = pd.DataFrame(
{"A": 1}, index=pd.date_range("20170103", periods=1)[::-1]
)
tm.assert_frame_equal(df.loc["2017-01-03"], expected)

def test_slice_year(self):
Expand Down
3 changes: 3 additions & 0 deletions pandas/tests/indexes/datetimes/test_shift.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,18 +28,21 @@ def test_dti_shift_tzaware(self, tz_naive_fixture):
["2011-01-01 10:00", "2011-01-01 11:00", "2011-01-01 12:00"],
name="xxx",
tz=tz,
freq="H",
)
tm.assert_index_equal(idx.shift(0, freq="H"), idx)
exp = pd.DatetimeIndex(
["2011-01-01 13:00", "2011-01-01 14:00", "2011-01-01 15:00"],
name="xxx",
tz=tz,
freq="H",
)
tm.assert_index_equal(idx.shift(3, freq="H"), exp)
exp = pd.DatetimeIndex(
["2011-01-01 07:00", "2011-01-01 08:00", "2011-01-01 09:00"],
name="xxx",
tz=tz,
freq="H",
)
tm.assert_index_equal(idx.shift(-3, freq="H"), exp)

Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/indexes/period/test_to_timestamp.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ def test_to_timestamp_quarterly_bug(self):
pindex = PeriodIndex(year=years, quarter=quarters)

stamps = pindex.to_timestamp("D", "end")
expected = DatetimeIndex([x.to_timestamp("D", "end") for x in pindex])
expected = DatetimeIndex([x.to_timestamp("D", "end") for x in pindex], freq="Q")
tm.assert_index_equal(stamps, expected)

def test_to_timestamp_pi_mult(self):
Expand Down
10 changes: 6 additions & 4 deletions pandas/tests/indexes/timedeltas/test_partial_slicing.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,9 +52,11 @@ def test_slice_with_negative_step(self):
SLC = pd.IndexSlice

def assert_slices_equivalent(l_slc, i_slc):
tm.assert_series_equal(ts[l_slc], ts.iloc[i_slc])
tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
expected = ts.iloc[i_slc]

tm.assert_series_equal(ts[l_slc], expected)
tm.assert_series_equal(ts.loc[l_slc], expected)
tm.assert_series_equal(ts.loc[l_slc], expected)

assert_slices_equivalent(SLC[Timedelta(hours=7) :: -1], SLC[7::-1])
assert_slices_equivalent(SLC["7 hours"::-1], SLC[7::-1])
Expand All @@ -73,7 +75,7 @@ def assert_slices_equivalent(l_slc, i_slc):
SLC[Timedelta(hours=15) : "7 hours" : -1], SLC[15:6:-1]
)

assert_slices_equivalent(SLC["7 hours":"15 hours":-1], SLC[:0])
assert_slices_equivalent(SLC["7 hours":"15 hours":-1], SLC[0:0:-1])

def test_slice_with_zero_step_raises(self):
ts = Series(np.arange(20), timedelta_range("0", periods=20, freq="H"))
Expand Down
6 changes: 4 additions & 2 deletions pandas/tests/series/methods/test_append.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@ def test_series_append_aware(self):
ts_result = ser1.append(ser2)

exp_index = DatetimeIndex(
["2011-01-01 01:00", "2011-01-01 02:00"], tz="US/Eastern"
["2011-01-01 01:00", "2011-01-01 02:00"], tz="US/Eastern", freq="H"
)
exp = Series([1, 2], index=exp_index)
tm.assert_series_equal(ts_result, exp)
Expand All @@ -187,7 +187,9 @@ def test_series_append_aware(self):
ser2 = Series([2], index=rng2)
ts_result = ser1.append(ser2)

exp_index = DatetimeIndex(["2011-01-01 01:00", "2011-01-01 02:00"], tz="UTC")
exp_index = DatetimeIndex(
["2011-01-01 01:00", "2011-01-01 02:00"], tz="UTC", freq="H"
)
exp = Series([1, 2], index=exp_index)
tm.assert_series_equal(ts_result, exp)
utc = rng1.tz
Expand Down
13 changes: 8 additions & 5 deletions pandas/tests/series/methods/test_asfreq.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,11 +39,14 @@ def test_tz_aware_asfreq(self, tz):
def test_asfreq(self):
ts = Series(
[0.0, 1.0, 2.0],
index=[
datetime(2009, 10, 30),
datetime(2009, 11, 30),
datetime(2009, 12, 31),
],
index=DatetimeIndex(
[
datetime(2009, 10, 30),
datetime(2009, 11, 30),
datetime(2009, 12, 31),
],
freq="BM",
),
)

daily_ts = ts.asfreq("B")
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/tseries/offsets/test_offsets.py
Original file line number Diff line number Diff line change
Expand Up @@ -3501,7 +3501,7 @@ def test_offset_whole_year(self):

# ensure generating a range with DatetimeIndex gives same result
result = date_range(start=dates[0], end=dates[-1], freq="SM")
exp = DatetimeIndex(dates)
exp = DatetimeIndex(dates, freq="SM")
tm.assert_index_equal(result, exp)

offset_cases = []
Expand Down Expand Up @@ -3760,7 +3760,7 @@ def test_offset_whole_year(self):

# ensure generating a range with DatetimeIndex gives same result
result = date_range(start=dates[0], end=dates[-1], freq="SMS")
exp = DatetimeIndex(dates)
exp = DatetimeIndex(dates, freq="SMS")
tm.assert_index_equal(result, exp)

offset_cases = []
Expand Down
26 changes: 19 additions & 7 deletions pandas/tests/window/moments/test_moments_rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
import pandas.util._test_decorators as td

import pandas as pd
from pandas import DataFrame, Index, Series, isna, notna
from pandas import DataFrame, DatetimeIndex, Index, Series, isna, notna
import pandas._testing as tm
from pandas.core.window.common import _flex_binary_moment
from pandas.tests.window.common import Base, ConsistencyBase
Expand Down Expand Up @@ -1346,7 +1346,9 @@ def test_rolling_max_gh6297(self):

expected = Series(
[1.0, 2.0, 6.0, 4.0, 5.0],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)],
index=DatetimeIndex(
[datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"
),
)
x = series.resample("D").max().rolling(window=1).max()
tm.assert_series_equal(expected, x)
Expand All @@ -1366,15 +1368,19 @@ def test_rolling_max_resample(self):
# Default how should be max
expected = Series(
[0.0, 1.0, 2.0, 3.0, 20.0],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)],
index=DatetimeIndex(
[datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"
),
)
x = series.resample("D").max().rolling(window=1).max()
tm.assert_series_equal(expected, x)

# Now specify median (10.0)
expected = Series(
[0.0, 1.0, 2.0, 3.0, 10.0],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)],
index=DatetimeIndex(
[datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"
),
)
x = series.resample("D").median().rolling(window=1).max()
tm.assert_series_equal(expected, x)
Expand All @@ -1383,7 +1389,9 @@ def test_rolling_max_resample(self):
v = (4.0 + 10.0 + 20.0) / 3.0
expected = Series(
[0.0, 1.0, 2.0, 3.0, v],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)],
index=DatetimeIndex(
[datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"
),
)
x = series.resample("D").mean().rolling(window=1).max()
tm.assert_series_equal(expected, x)
Expand All @@ -1403,7 +1411,9 @@ def test_rolling_min_resample(self):
# Default how should be min
expected = Series(
[0.0, 1.0, 2.0, 3.0, 4.0],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)],
index=DatetimeIndex(
[datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"
),
)
r = series.resample("D").min().rolling(window=1)
tm.assert_series_equal(expected, r.min())
Expand All @@ -1423,7 +1433,9 @@ def test_rolling_median_resample(self):
# Default how should be median
expected = Series(
[0.0, 1.0, 2.0, 3.0, 10],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)],
index=DatetimeIndex(
[datetime(1975, 1, i, 0) for i in range(1, 6)], freq="D"
),
)
x = series.resample("D").median().rolling(window=1).median()
tm.assert_series_equal(expected, x)
Expand Down