Skip to content

Groupby test_apply_mutate #33468

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 70 additions & 0 deletions pandas/tests/groupby/test_apply_mutate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
import numpy as np

import pandas as pd
import pandas._testing as tm


def test_mutate_groups():

# GH3380

df = pd.DataFrame(
{
"cat1": ["a"] * 8 + ["b"] * 6,
"cat2": ["c"] * 2
+ ["d"] * 2
+ ["e"] * 2
+ ["f"] * 2
+ ["c"] * 2
+ ["d"] * 2
+ ["e"] * 2,
"cat3": [f"g{x}" for x in range(1, 15)],
"val": np.random.randint(100, size=14),
}
)

def f_copy(x):
x = x.copy()
x["rank"] = x.val.rank(method="min")
return x.groupby("cat2")["rank"].min()

def f_no_copy(x):
x["rank"] = x.val.rank(method="min")
return x.groupby("cat2")["rank"].min()

grpby_copy = df.groupby("cat1").apply(f_copy)
grpby_no_copy = df.groupby("cat1").apply(f_no_copy)
tm.assert_series_equal(grpby_copy, grpby_no_copy)


def test_no_mutate_but_looks_like():

# GH 8467
# first show's mutation indicator
# second does not, but should yield the same results
df = pd.DataFrame({"key": [1, 1, 1, 2, 2, 2, 3, 3, 3], "value": range(9)})

result1 = df.groupby("key", group_keys=True).apply(lambda x: x[:].key)
result2 = df.groupby("key", group_keys=True).apply(lambda x: x.key)
tm.assert_series_equal(result1, result2)


def test_apply_function_with_indexing():
# GH: 33058
df = pd.DataFrame(
{"col1": ["A", "A", "A", "B", "B", "B"], "col2": [1, 2, 3, 4, 5, 6]}
)

def fn(x):
x.col2[x.index[-1]] = 0
return x.col2

result = df.groupby(["col1"], as_index=False).apply(fn)
expected = pd.Series(
[1, 2, 0, 4, 5, 0],
index=pd.MultiIndex.from_tuples(
[(0, 0), (0, 1), (0, 2), (1, 3), (1, 4), (1, 5)]
),
name="col2",
)
tm.assert_series_equal(result, expected)
45 changes: 0 additions & 45 deletions pandas/tests/groupby/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -921,51 +921,6 @@ def test_groupby_complex():
tm.assert_series_equal(result, expected)


def test_mutate_groups():

# GH3380

df = DataFrame(
{
"cat1": ["a"] * 8 + ["b"] * 6,
"cat2": ["c"] * 2
+ ["d"] * 2
+ ["e"] * 2
+ ["f"] * 2
+ ["c"] * 2
+ ["d"] * 2
+ ["e"] * 2,
"cat3": [f"g{x}" for x in range(1, 15)],
"val": np.random.randint(100, size=14),
}
)

def f_copy(x):
x = x.copy()
x["rank"] = x.val.rank(method="min")
return x.groupby("cat2")["rank"].min()

def f_no_copy(x):
x["rank"] = x.val.rank(method="min")
return x.groupby("cat2")["rank"].min()

grpby_copy = df.groupby("cat1").apply(f_copy)
grpby_no_copy = df.groupby("cat1").apply(f_no_copy)
tm.assert_series_equal(grpby_copy, grpby_no_copy)


def test_no_mutate_but_looks_like():

# GH 8467
# first show's mutation indicator
# second does not, but should yield the same results
df = DataFrame({"key": [1, 1, 1, 2, 2, 2, 3, 3, 3], "value": range(9)})

result1 = df.groupby("key", group_keys=True).apply(lambda x: x[:].key)
result2 = df.groupby("key", group_keys=True).apply(lambda x: x.key)
tm.assert_series_equal(result1, result2)


def test_groupby_series_indexed_differently():
s1 = Series(
[5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7],
Expand Down