Skip to content

Backport PR #32386 on branch 1.0.x (BUG: Fix rolling functions with variable windows on decreasing index) #32606

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions doc/source/whatsnew/v1.0.2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,10 @@ Bug fixes

- Using ``pd.NA`` with :meth:`Series.str.repeat` now correctly outputs a null value instead of raising error for vector inputs (:issue:`31632`)

**Rolling**

- Fixed rolling operations with variable window (defined by time duration) on decreasing time index (:issue:`32385`).

.. ---------------------------------------------------------------------------

.. _whatsnew_102.contributors:
Expand Down
4 changes: 2 additions & 2 deletions pandas/_libs/window/aggregations.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -1008,7 +1008,7 @@ def roll_max_variable(ndarray[float64_t] values, ndarray[int64_t] start,
def roll_min_fixed(ndarray[float64_t] values, ndarray[int64_t] start,
ndarray[int64_t] end, int64_t minp, int64_t win):
"""
Moving max of 1d array of any numeric type along axis=0 ignoring NaNs.
Moving min of 1d array of any numeric type along axis=0 ignoring NaNs.

Parameters
----------
Expand All @@ -1025,7 +1025,7 @@ def roll_min_fixed(ndarray[float64_t] values, ndarray[int64_t] start,
def roll_min_variable(ndarray[float64_t] values, ndarray[int64_t] start,
ndarray[int64_t] end, int64_t minp):
"""
Moving max of 1d array of any numeric type along axis=0 ignoring NaNs.
Moving min of 1d array of any numeric type along axis=0 ignoring NaNs.

Parameters
----------
Expand Down
10 changes: 7 additions & 3 deletions pandas/_libs/window/indexers.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ def calculate_variable_window_bounds(
cdef:
bint left_closed = False
bint right_closed = False
int index_growth_sign = 1
ndarray[int64_t, ndim=1] start, end
int64_t start_bound, end_bound
Py_ssize_t i, j
Expand All @@ -58,6 +59,9 @@ def calculate_variable_window_bounds(
if closed in ['left', 'both']:
left_closed = True

if index[num_values - 1] < index[0]:
index_growth_sign = -1

start = np.empty(num_values, dtype='int64')
start.fill(-1)
end = np.empty(num_values, dtype='int64')
Expand All @@ -78,7 +82,7 @@ def calculate_variable_window_bounds(
# end is end of slice interval (not including)
for i in range(1, num_values):
end_bound = index[i]
start_bound = index[i] - window_size
start_bound = index[i] - index_growth_sign * window_size

# left endpoint is closed
if left_closed:
Expand All @@ -88,13 +92,13 @@ def calculate_variable_window_bounds(
# within the constraint
start[i] = i
for j in range(start[i - 1], i):
if index[j] > start_bound:
if (index[j] - start_bound) * index_growth_sign > 0:
start[i] = j
break

# end bound is previous end
# or current index
if index[end[i - 1]] <= end_bound:
if (index[end[i - 1]] - end_bound) * index_growth_sign <= 0:
end[i] = i + 1
else:
end[i] = end[i - 1]
Expand Down
27 changes: 16 additions & 11 deletions pandas/tests/window/test_timeseries_window.py
Original file line number Diff line number Diff line change
Expand Up @@ -709,20 +709,25 @@ def test_rolling_cov_offset(self):
tm.assert_series_equal(result, expected2)

def test_rolling_on_decreasing_index(self):
# GH-19248
# GH-19248, GH-32385
index = [
Timestamp("20190101 09:00:00"),
Timestamp("20190101 09:00:02"),
Timestamp("20190101 09:00:03"),
Timestamp("20190101 09:00:05"),
Timestamp("20190101 09:00:06"),
Timestamp("20190101 09:00:30"),
Timestamp("20190101 09:00:27"),
Timestamp("20190101 09:00:20"),
Timestamp("20190101 09:00:18"),
Timestamp("20190101 09:00:10"),
]

df = DataFrame({"column": [3, 4, 4, 2, 1]}, index=reversed(index))
result = df.rolling("2s").min()
expected = DataFrame(
{"column": [3.0, 3.0, 3.0, 2.0, 1.0]}, index=reversed(index)
)
df = DataFrame({"column": [3, 4, 4, 5, 6]}, index=index)
result = df.rolling("5s").min()
expected = DataFrame({"column": [3.0, 3.0, 4.0, 4.0, 6.0]}, index=index)
tm.assert_frame_equal(result, expected)

def test_rolling_on_empty(self):
# GH-32385
df = DataFrame({"column": []}, index=[])
result = df.rolling("5s").min()
expected = DataFrame({"column": []}, index=[])
tm.assert_frame_equal(result, expected)

def test_rolling_on_multi_index_level(self):
Expand Down