Skip to content

TST: Add more regression tests for fixed issues #31171

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jan 21, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions pandas/tests/frame/test_constructors.py
Original file line number Diff line number Diff line change
Expand Up @@ -412,6 +412,12 @@ def test_constructor_dict_order_insertion(self):
expected = DataFrame(data=d, columns=list("ba"))
tm.assert_frame_equal(frame, expected)

def test_constructor_dict_nan_key_and_columns(self):
# GH 16894
result = pd.DataFrame({np.nan: [1, 2], 2: [2, 3]}, columns=[np.nan, 2])
expected = pd.DataFrame([[1, 2], [2, 3]], columns=[np.nan, 2])
tm.assert_frame_equal(result, expected)

def test_constructor_multi_index(self):
# GH 4078
# construction error with mi and all-nan frame
Expand Down
16 changes: 16 additions & 0 deletions pandas/tests/groupby/aggregate/test_aggregate.py
Original file line number Diff line number Diff line change
Expand Up @@ -630,6 +630,22 @@ def test_lambda_named_agg(func):
tm.assert_frame_equal(result, expected)


def test_aggregate_mixed_types():
# GH 16916
df = pd.DataFrame(
data=np.array([0] * 9).reshape(3, 3), columns=list("XYZ"), index=list("abc")
)
df["grouping"] = ["group 1", "group 1", 2]
result = df.groupby("grouping").aggregate(lambda x: x.tolist())
expected_data = [[[0], [0], [0]], [[0, 0], [0, 0], [0, 0]]]
expected = pd.DataFrame(
expected_data,
index=Index([2, "group 1"], dtype="object", name="grouping"),
columns=Index(["X", "Y", "Z"], dtype="object"),
)
tm.assert_frame_equal(result, expected)


class TestLambdaMangling:
def test_basic(self):
df = pd.DataFrame({"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]})
Expand Down
12 changes: 12 additions & 0 deletions pandas/tests/indexes/interval/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -312,6 +312,18 @@ def test_get_indexer_non_unique_with_int_and_float(self, query, expected):
# TODO we may also want to test get_indexer for the case when
# the intervals are duplicated, decreasing, non-monotonic, etc..

def test_get_indexer_non_monotonic(self):
# GH 16410
idx1 = IntervalIndex.from_tuples([(2, 3), (4, 5), (0, 1)])
idx2 = IntervalIndex.from_tuples([(0, 1), (2, 3), (6, 7), (8, 9)])
result = idx1.get_indexer(idx2)
expected = np.array([2, 0, -1, -1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)

result = idx1.get_indexer(idx1[1:])
expected = np.array([1, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)


class TestSliceLocs:
def test_slice_locs_with_interval(self):
Expand Down
10 changes: 10 additions & 0 deletions pandas/tests/indexing/multiindex/test_getitem.py
Original file line number Diff line number Diff line change
Expand Up @@ -250,3 +250,13 @@ def test_frame_mi_access_returns_frame(dataframe_with_duplicate_index):
).T
result = df["A"]["B2"]
tm.assert_frame_equal(result, expected)


def test_frame_mi_empty_slice():
# GH 15454
df = DataFrame(0, index=range(2), columns=MultiIndex.from_product([[1], [2]]))
result = df[[]]
expected = DataFrame(
index=[0, 1], columns=MultiIndex(levels=[[1], [2]], codes=[[], []])
)
tm.assert_frame_equal(result, expected)
19 changes: 19 additions & 0 deletions pandas/tests/indexing/multiindex/test_loc.py
Original file line number Diff line number Diff line change
Expand Up @@ -468,3 +468,22 @@ def test_loc_period_string_indexing():
),
)
tm.assert_series_equal(result, expected)


def test_loc_datetime_mask_slicing():
# GH 16699
dt_idx = pd.to_datetime(["2017-05-04", "2017-05-05"])
m_idx = pd.MultiIndex.from_product([dt_idx, dt_idx], names=["Idx1", "Idx2"])
df = pd.DataFrame(
data=[[1, 2], [3, 4], [5, 6], [7, 6]], index=m_idx, columns=["C1", "C2"]
)
result = df.loc[(dt_idx[0], (df.index.get_level_values(1) > "2017-05-04")), "C1"]
expected = pd.Series(
[3],
name="C1",
index=MultiIndex.from_tuples(
[(pd.Timestamp("2017-05-04"), pd.Timestamp("2017-05-05"))],
names=["Idx1", "Idx2"],
),
)
tm.assert_series_equal(result, expected)
17 changes: 17 additions & 0 deletions pandas/tests/resample/test_resampler_grouper.py
Original file line number Diff line number Diff line change
Expand Up @@ -230,6 +230,23 @@ def f(x):
tm.assert_series_equal(result, expected)


def test_apply_columns_multilevel():
# GH 16231
cols = pd.MultiIndex.from_tuples([("A", "a", "", "one"), ("B", "b", "i", "two")])
ind = date_range(start="2017-01-01", freq="15Min", periods=8)
df = DataFrame(np.array([0] * 16).reshape(8, 2), index=ind, columns=cols)
agg_dict = {col: (np.sum if col[3] == "one" else np.mean) for col in df.columns}
result = df.resample("H").apply(lambda x: agg_dict[x.name](x))
expected = DataFrame(
np.array([0] * 4).reshape(2, 2),
index=date_range(start="2017-01-01", freq="1H", periods=2),
columns=pd.MultiIndex.from_tuples(
[("A", "a", "", "one"), ("B", "b", "i", "two")]
),
)
tm.assert_frame_equal(result, expected)


def test_resample_groupby_with_label():
# GH 13235
index = date_range("2000-01-01", freq="2D", periods=5)
Expand Down
40 changes: 40 additions & 0 deletions pandas/tests/reshape/test_pivot.py
Original file line number Diff line number Diff line change
Expand Up @@ -2649,6 +2649,46 @@ def test_crosstab_unsorted_order(self):
)
tm.assert_frame_equal(result, expected)

def test_crosstab_normalize_multiple_columns(self):
# GH 15150
df = pd.DataFrame(
{
"A": ["one", "one", "two", "three"] * 6,
"B": ["A", "B", "C"] * 8,
"C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 4,
"D": [0] * 24,
"E": [0] * 24,
}
)
result = pd.crosstab(
[df.A, df.B],
df.C,
values=df.D,
aggfunc=np.sum,
normalize=True,
margins=True,
)
expected = pd.DataFrame(
np.array([0] * 29 + [1], dtype=float).reshape(10, 3),
columns=Index(["bar", "foo", "All"], dtype="object", name="C"),
index=MultiIndex.from_tuples(
[
("one", "A"),
("one", "B"),
("one", "C"),
("three", "A"),
("three", "B"),
("three", "C"),
("two", "A"),
("two", "B"),
("two", "C"),
("All", ""),
],
names=["A", "B"],
),
)
tm.assert_frame_equal(result, expected)

def test_margin_normalize(self):
# GH 27500
df = pd.DataFrame(
Expand Down