Skip to content

TYP: Implicit generic "Any" for builtins #30541

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 13 commits into from
Dec 31, 2019
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions pandas/_typing.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
from pandas.core.indexes.base import Index # noqa: F401
from pandas.core.series import Series # noqa: F401
from pandas.core.generic import NDFrame # noqa: F401
from pandas import Interval # noqa: F401


AnyArrayLike = TypeVar("AnyArrayLike", "ExtensionArray", "Index", "Series", np.ndarray)
Expand All @@ -32,10 +33,12 @@
FilePathOrBuffer = Union[str, Path, IO[AnyStr]]

FrameOrSeries = TypeVar("FrameOrSeries", bound="NDFrame")
Scalar = Union[str, int, float, bool]
PythonScalar = Union[str, int, float, bool]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

would move DatetimeLikeScalar closer to these (also would add some comments about various sections, e.g. these are Scalars )

PandasScalar = Union[DatetimeLikeScalar, "Interval"]
Scalar = Union[PythonScalar, PandasScalar]
Axis = Union[str, int]
Ordered = Optional[bool]
JSONSerializable = Union[Scalar, List, Dict]
JSONSerializable = Union[PythonScalar, List, Dict]

Axes = Collection

Expand Down
12 changes: 6 additions & 6 deletions pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
import operator
from shutil import get_terminal_size
from typing import Type, Union, cast
from typing import Dict, Hashable, List, Type, Union, cast
from warnings import warn

import numpy as np

from pandas._config import get_option

from pandas._libs import algos as libalgos, hashtable as htable
from pandas._typing import ArrayLike, Dtype, Ordered
from pandas._typing import ArrayLike, Dtype, Ordered, Scalar
from pandas.compat.numpy import function as nv
from pandas.util._decorators import (
Appender,
Expand Down Expand Up @@ -511,7 +511,7 @@ def itemsize(self) -> int:
"""
return self.categories.itemsize

def tolist(self) -> list:
def tolist(self) -> List[Scalar]:
"""
Return a list of the values.

Expand Down Expand Up @@ -2067,7 +2067,7 @@ def __setitem__(self, key, value):
lindexer = self._maybe_coerce_indexer(lindexer)
self._codes[key] = lindexer

def _reverse_indexer(self):
def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]:
"""
Compute the inverse of a categorical, returning
a dict of categories -> indexers.
Expand Down Expand Up @@ -2097,8 +2097,8 @@ def _reverse_indexer(self):
self.codes.astype("int64"), categories.size
)
counts = counts.cumsum()
result = (r[start:end] for start, end in zip(counts, counts[1:]))
result = dict(zip(categories, result))
_result = (r[start:end] for start, end in zip(counts, counts[1:]))
result = dict(zip(categories, _result))
return result

# reduction ops #
Expand Down
7 changes: 5 additions & 2 deletions pandas/core/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from datetime import datetime, timedelta
from functools import partial
import inspect
from typing import Any, Iterable, Union
from typing import Any, Collection, Iterable, TypeVar, Union

import numpy as np

Expand Down Expand Up @@ -270,7 +270,10 @@ def maybe_make_list(obj):
return obj


def maybe_iterable_to_list(obj: Union[Iterable, Any]) -> Union[list, Any]:
_T = TypeVar("_T")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

should't we just do this in _typing (and just call it T)



def maybe_iterable_to_list(obj: Union[Iterable[_T], _T]) -> Union[Collection[_T], _T]:
"""
If obj is Iterable but not list-like, consume into list.
"""
Expand Down
4 changes: 2 additions & 2 deletions pandas/core/groupby/grouper.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
split-apply-combine paradigm.
"""

from typing import Hashable, List, Optional, Tuple
from typing import Dict, Hashable, List, Optional, Tuple

import numpy as np

Expand Down Expand Up @@ -419,7 +419,7 @@ def _make_codes(self) -> None:
self._group_index = uniques

@cache_readonly
def groups(self) -> dict:
def groups(self) -> Dict[Hashable, np.ndarray]:
return self.index.groupby(Categorical.from_codes(self.codes, self.group_index))


Expand Down
6 changes: 3 additions & 3 deletions pandas/core/indexes/base.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from datetime import datetime
import operator
from textwrap import dedent
from typing import FrozenSet, Hashable, Optional, Union
from typing import Dict, FrozenSet, Hashable, Optional, Union
import warnings

import numpy as np
Expand Down Expand Up @@ -4594,7 +4594,7 @@ def _maybe_promote(self, other):
return self.astype("object"), other.astype("object")
return self, other

def groupby(self, values):
def groupby(self, values) -> Dict[Hashable, np.ndarray]:
"""
Group the index labels by a given array of values.

Expand All @@ -4605,7 +4605,7 @@ def groupby(self, values):

Returns
-------
groups : dict
dict
{group name -> group labels}
"""

Expand Down
11 changes: 6 additions & 5 deletions pandas/core/indexing.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import Tuple
from typing import Hashable, List, Tuple, Union

import numpy as np

Expand Down Expand Up @@ -2224,7 +2224,7 @@ def _convert_key(self, key, is_setter: bool = False):
return key


def _tuplify(ndim: int, loc) -> tuple:
def _tuplify(ndim: int, loc: Hashable) -> Tuple[Union[Hashable, slice], ...]:
"""
Given an indexer for the first dimension, create an equivalent tuple
for indexing over all dimensions.
Expand All @@ -2238,9 +2238,10 @@ def _tuplify(ndim: int, loc) -> tuple:
-------
tuple
"""
tup = [slice(None, None) for _ in range(ndim)]
tup[0] = loc
return tuple(tup)
_tup: List[Union[Hashable, slice]]
_tup = [slice(None, None) for _ in range(ndim)]
_tup[0] = loc
return tuple(_tup)


def convert_to_index_sliceable(obj, key):
Expand Down
2 changes: 1 addition & 1 deletion pandas/io/pytables.py
Original file line number Diff line number Diff line change
Expand Up @@ -1459,7 +1459,7 @@ def copy(
data = self.select(k)
if isinstance(s, Table):

index: Union[bool, list] = False
index: Union[bool, List[str]] = False
if propindexes:
index = [a.name for a in s.axes if a.is_indexed]
new_store.append(
Expand Down
6 changes: 3 additions & 3 deletions pandas/tests/frame/methods/test_replace.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from datetime import datetime
from io import StringIO
import re
from typing import Dict
from typing import Dict, List, Union

import numpy as np
import pytest
Expand All @@ -12,12 +12,12 @@


@pytest.fixture
def mix_ab() -> Dict[str, list]:
def mix_ab() -> Dict[str, List[Union[int, str]]]:
return {"a": list(range(4)), "b": list("ab..")}


@pytest.fixture
def mix_abc() -> Dict[str, list]:
def mix_abc() -> Dict[str, List[Union[float, str]]]:
return {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]}


Expand Down