Skip to content

REF: method-specific tests for cov, corr, corrwith, count, round #30437

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Dec 24, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 36 additions & 0 deletions pandas/tests/frame/methods/test_count.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
from pandas import DataFrame, Series
import pandas.util.testing as tm


class TestDataFrameCount:
def test_count(self):
# corner case
frame = DataFrame()
ct1 = frame.count(1)
assert isinstance(ct1, Series)

ct2 = frame.count(0)
assert isinstance(ct2, Series)

# GH#423
df = DataFrame(index=range(10))
result = df.count(1)
expected = Series(0, index=df.index)
tm.assert_series_equal(result, expected)

df = DataFrame(columns=range(10))
result = df.count(0)
expected = Series(0, index=df.columns)
tm.assert_series_equal(result, expected)

df = DataFrame()
result = df.count()
expected = Series(0, index=[])
tm.assert_series_equal(result, expected)

def test_count_objects(self, float_string_frame):
dm = DataFrame(float_string_frame._series)
df = DataFrame(float_string_frame._series)

tm.assert_series_equal(dm.count(), df.count())
tm.assert_series_equal(dm.count(1), df.count(1))
289 changes: 289 additions & 0 deletions pandas/tests/frame/methods/test_cov_corr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,289 @@
import warnings
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If it makes sense, I think a separate test_cov.py and test_corr.py would be good.


import numpy as np
import pytest

import pandas.util._test_decorators as td

import pandas as pd
from pandas import DataFrame, Series, isna
import pandas.util.testing as tm


class TestDataFrameCov:
def test_cov(self, float_frame, float_string_frame):
# min_periods no NAs (corner case)
expected = float_frame.cov()
result = float_frame.cov(min_periods=len(float_frame))

tm.assert_frame_equal(expected, result)

result = float_frame.cov(min_periods=len(float_frame) + 1)
assert isna(result.values).all()

# with NAs
frame = float_frame.copy()
frame["A"][:5] = np.nan
frame["B"][5:10] = np.nan
result = float_frame.cov(min_periods=len(float_frame) - 8)
expected = float_frame.cov()
expected.loc["A", "B"] = np.nan
expected.loc["B", "A"] = np.nan

# regular
float_frame["A"][:5] = np.nan
float_frame["B"][:10] = np.nan
cov = float_frame.cov()

tm.assert_almost_equal(cov["A"]["C"], float_frame["A"].cov(float_frame["C"]))

# exclude non-numeric types
result = float_string_frame.cov()
expected = float_string_frame.loc[:, ["A", "B", "C", "D"]].cov()
tm.assert_frame_equal(result, expected)

# Single column frame
df = DataFrame(np.linspace(0.0, 1.0, 10))
result = df.cov()
expected = DataFrame(
np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns
)
tm.assert_frame_equal(result, expected)
df.loc[0] = np.nan
result = df.cov()
expected = DataFrame(
np.cov(df.values[1:].T).reshape((1, 1)),
index=df.columns,
columns=df.columns,
)
tm.assert_frame_equal(result, expected)


class TestDataFrameCorr:
# DataFrame.corr(), as opposed to DataFrame.corrwith

@staticmethod
def _check_method(frame, method="pearson"):
correls = frame.corr(method=method)
expected = frame["A"].corr(frame["C"], method=method)
tm.assert_almost_equal(correls["A"]["C"], expected)

@td.skip_if_no_scipy
def test_corr_pearson(self, float_frame):
float_frame["A"][:5] = np.nan
float_frame["B"][5:10] = np.nan

self._check_method(float_frame, "pearson")

@td.skip_if_no_scipy
def test_corr_kendall(self, float_frame):
float_frame["A"][:5] = np.nan
float_frame["B"][5:10] = np.nan

self._check_method(float_frame, "kendall")

@td.skip_if_no_scipy
def test_corr_spearman(self, float_frame):
float_frame["A"][:5] = np.nan
float_frame["B"][5:10] = np.nan

self._check_method(float_frame, "spearman")

# ---------------------------------------------------------------------

@td.skip_if_no_scipy
def test_corr_non_numeric(self, float_frame, float_string_frame):
float_frame["A"][:5] = np.nan
float_frame["B"][5:10] = np.nan

# exclude non-numeric types
result = float_string_frame.corr()
expected = float_string_frame.loc[:, ["A", "B", "C", "D"]].corr()
tm.assert_frame_equal(result, expected)

@td.skip_if_no_scipy
@pytest.mark.parametrize("meth", ["pearson", "kendall", "spearman"])
def test_corr_nooverlap(self, meth):
# nothing in common
df = DataFrame(
{
"A": [1, 1.5, 1, np.nan, np.nan, np.nan],
"B": [np.nan, np.nan, np.nan, 1, 1.5, 1],
"C": [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
}
)
rs = df.corr(meth)
assert isna(rs.loc["A", "B"])
assert isna(rs.loc["B", "A"])
assert rs.loc["A", "A"] == 1
assert rs.loc["B", "B"] == 1
assert isna(rs.loc["C", "C"])

@td.skip_if_no_scipy
@pytest.mark.parametrize("meth", ["pearson", "spearman"])
def test_corr_constant(self, meth):
# constant --> all NA

df = DataFrame(
{
"A": [1, 1, 1, np.nan, np.nan, np.nan],
"B": [np.nan, np.nan, np.nan, 1, 1, 1],
}
)
rs = df.corr(meth)
assert isna(rs.values).all()

@td.skip_if_no_scipy
def test_corr_int_and_boolean(self):
# when dtypes of pandas series are different
# then ndarray will have dtype=object,
# so it need to be properly handled
df = DataFrame({"a": [True, False], "b": [1, 0]})

expected = DataFrame(np.ones((2, 2)), index=["a", "b"], columns=["a", "b"])
for meth in ["pearson", "kendall", "spearman"]:

with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore", RuntimeWarning)
result = df.corr(meth)
tm.assert_frame_equal(result, expected)

def test_corr_cov_independent_index_column(self):
# GH#14617
df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd"))
for method in ["cov", "corr"]:
result = getattr(df, method)()
assert result.index is not result.columns
assert result.index.equals(result.columns)

def test_corr_invalid_method(self):
# GH#22298
df = pd.DataFrame(np.random.normal(size=(10, 2)))
msg = "method must be either 'pearson', 'spearman', 'kendall', or a callable, "
with pytest.raises(ValueError, match=msg):
df.corr(method="____")

def test_corr_int(self):
# dtypes other than float64 GH#1761
df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]})

df3.cov()
df3.corr()


class TestDataFrameCorrWith:
def test_corrwith(self, datetime_frame):
a = datetime_frame
noise = Series(np.random.randn(len(a)), index=a.index)

b = datetime_frame.add(noise, axis=0)

# make sure order does not matter
b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:])
del b["B"]

colcorr = a.corrwith(b, axis=0)
tm.assert_almost_equal(colcorr["A"], a["A"].corr(b["A"]))

rowcorr = a.corrwith(b, axis=1)
tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0))

dropped = a.corrwith(b, axis=0, drop=True)
tm.assert_almost_equal(dropped["A"], a["A"].corr(b["A"]))
assert "B" not in dropped

dropped = a.corrwith(b, axis=1, drop=True)
assert a.index[-1] not in dropped.index

# non time-series data
index = ["a", "b", "c", "d", "e"]
columns = ["one", "two", "three", "four"]
df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns)
df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns)
correls = df1.corrwith(df2, axis=1)
for row in index[:4]:
tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row]))

def test_corrwith_with_objects(self):
df1 = tm.makeTimeDataFrame()
df2 = tm.makeTimeDataFrame()
cols = ["A", "B", "C", "D"]

df1["obj"] = "foo"
df2["obj"] = "bar"

result = df1.corrwith(df2)
expected = df1.loc[:, cols].corrwith(df2.loc[:, cols])
tm.assert_series_equal(result, expected)

result = df1.corrwith(df2, axis=1)
expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1)
tm.assert_series_equal(result, expected)

def test_corrwith_series(self, datetime_frame):
result = datetime_frame.corrwith(datetime_frame["A"])
expected = datetime_frame.apply(datetime_frame["A"].corr)

tm.assert_series_equal(result, expected)

def test_corrwith_matches_corrcoef(self):
df1 = DataFrame(np.arange(10000), columns=["a"])
df2 = DataFrame(np.arange(10000) ** 2, columns=["a"])
c1 = df1.corrwith(df2)["a"]
c2 = np.corrcoef(df1["a"], df2["a"])[0][1]

tm.assert_almost_equal(c1, c2)
assert c1 < 1

def test_corrwith_mixed_dtypes(self):
# GH#18570
df = pd.DataFrame(
{"a": [1, 4, 3, 2], "b": [4, 6, 7, 3], "c": ["a", "b", "c", "d"]}
)
s = pd.Series([0, 6, 7, 3])
result = df.corrwith(s)
corrs = [df["a"].corr(s), df["b"].corr(s)]
expected = pd.Series(data=corrs, index=["a", "b"])
tm.assert_series_equal(result, expected)

def test_corrwith_index_intersection(self):
df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"])
df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"])

result = df1.corrwith(df2, drop=True).index.sort_values()
expected = df1.columns.intersection(df2.columns).sort_values()
tm.assert_index_equal(result, expected)

def test_corrwith_index_union(self):
df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"])
df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"])

result = df1.corrwith(df2, drop=False).index.sort_values()
expected = df1.columns.union(df2.columns).sort_values()
tm.assert_index_equal(result, expected)

def test_corrwith_dup_cols(self):
# GH#21925
df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T)
df2 = df1.copy()
df2 = pd.concat((df2, df2[0]), axis=1)

result = df1.corrwith(df2)
expected = pd.Series(np.ones(4), index=[0, 0, 1, 2])
tm.assert_series_equal(result, expected)

@td.skip_if_no_scipy
def test_corrwith_spearman(self):
# GH#21925
df = pd.DataFrame(np.random.random(size=(100, 3)))
result = df.corrwith(df ** 2, method="spearman")
expected = Series(np.ones(len(result)))
tm.assert_series_equal(result, expected)

@td.skip_if_no_scipy
def test_corrwith_kendall(self):
# GH#21925
df = pd.DataFrame(np.random.random(size=(100, 3)))
result = df.corrwith(df ** 2, method="kendall")
expected = Series(np.ones(len(result)))
tm.assert_series_equal(result, expected)
Loading